|
[1] Barmish, B. R. and Leitmann, G., “On Ultimate Boundedness Control of Uncertain Systems in the Absence of Matching Assumptions,” IEEE Transactions on Automatic Control, Vol. AC-27, NO. 1, pp. 153─158, 1982. [2] Byrnes, C. I., Isidori, A. and Willems, J. C., “Passivity, feedback equiva- lence, and the global stabilization of minimum phase nonlinear systems,” IEEE Transactions on Automatic Control, Vol. 36, No. 11, pp. 1228─ 1240, 1991. [3] Chen, Y. H., “On the robustness of mismatched uncertain dynamical sys- tems,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 109, pp. 29─35, March 1987. [4] Chen, Y. H. and Leitmann, G., “Robustness of uncertain systems in the absence of matching assumptions,” International Journal of Control, Vol. 45, No. 5, pp. 1527─1542, 1987. [5] Chen, Y. C., Lin, P. L. and Chang, S., “Design of output tracking via variable structure system: for plants with redundant inputs,” IEE Proceedings-D Control Theory and Applications, Vol. 139, No. 4, pp. 421─ 428, 1992. [6] Chen, C. T., Analog and Digital Control System Design: Transfer- Function, State-Space, and Algebraic Methods, Saunders College Pub- lishing, 1993. [7] Cheng, C. C. and Liu, I. M., “Design of MIMO output feedback integral variable structure controllers,” Journal of the Franklin Institute, Vol. 336, No. 7, pp. 1119-1134, 1999. [8] Cheng, C. C., Lin, M. H. and Hsiao, J. M., “Sliding mode controllers design for linear discrete-time systems with matching perturbations,” Automatica, Vol. 36, No. 8, pp. 1205─1211, 2000. [9] Cheres, E., Gutman, S. and Palmor, Z.J., “Stabilization of uncertain dy- namic systems including state delay,” IEEE Transactions on Automatic Control, Vol. AC-34, No. 11, pp. 1199-1203, 1989. [10] Chiang, C.C., “Decentralized variable structure model-reference adap- tive control of linear time-varying large-scale systems with bounded dis- turbances,” International Journal of System Sciences. Vol. 26, No. 10, pp. 1993─2003, 1995. [11] Choi, H. H. and Chung, M. J., “Memoryless stabilization of uncertain dynamic systems with time-varying delayed states and controls,” Auto- matica, Vol. 31, No. 9, pp. 1349─1351, 1995. [12] Chou, C.H. and Cheng, C.C., “Decentralized model following variable structure control for perturbed large-scale systems with time-delay inter- connections,” Proceedings of the American Control Conference, pp. 641─ 645, 2000. [13] DeCarlo, R. A., ú Zak, S. H. and Matthews, G. P., “Variable structure control of nonlinear multivariable systems: A Tutorial,” Proceedings of the IEEE, Vol. 76, No. 3, pp. 212─232, 1988. [14] Drazenovic, B., “The invariance conditions in variable structure sys- tems,” Automatica, Vol. 5, No. 3, pp. 287─295, 1969. [15] Elmali, H. and Olgac, N., “Sliding mode control with perturbation es- timation (SMCPE): a new approach,” International Journal of Control, Vol. 56, No. 4, pp. 923-941, 1992. [16] Elmali, H. and Olgac, N., “Satellite attitude control via sliding mode with perturbation estimation,” IEE Proceedings-D Control Theory and Applications, Vol. 143, No. 3, pp. 276─282, 1996. [17] Elmali, H. and Olgac, N., “Implementation of sliding mode control with perturbation estimation (SMCPE),” IEEE Transactions on Control Sys- tems Technology, Vol. 4, No. 1, pp. 79─85, 1996. [18] Emelyanov, S. V., “A technique to develop complex control equations by using only the error signal of control variable and its Þrst derivative,” Automatica Telemekhanika, Vol. 18, No. 10, pp. 873─885, 1957. [19] Esfandiari, F. and Khalil, H. K., “Stability analysis of a continuous im- plementation of variable structure control,” IEEE Transactions on Au- tomatic Control, Vol. 36, No. 5, pp. 616─620, 1991. [20] Fu, L. C. and Liao, T. L., “Globally stable robust tracking of nonlinear systems using variable structure control and with an application to a robotic manipulator,” IEEE Transactions on Automatic Control, Vol. 35, No. 12, pp. 1345─1350, 1990. [21] Garret, S. J., “Linear switching conditions for a third order positive- negative feedback,” Appl. Ind., No. 54, 1961. [22] Hsu, K.C., ”Decentralized variable-structure control design for uncertain large-scale systems with series nonlinearities,” International Journal of Control, Vol. 68, No. 6, pp. 1231─1240, 1997. [23] Hsu, K.C., “Decentralized variable structure model-following adaptive control for interconnected systems with series nonlinearities,” Interna- tional Journal of Systems Science, Vol. 29, No. 4, pp. 365─372, 1998. [24] Hu, J., Chu, J. and Su, H., “SMVSC for a class of time-delay uncertian systems with mismatching uncertainties,” IEE Proceedings-D Control Theory and Applications, Vol. 147, No. 6, pp. 687─693, 2000. [25] Hui, S. and ú Zak, S. H., “Robust control synthesis for uncertain/nonlinear dynamical systems,” Automatica, Vol. 28, No. 2, pp. 289─298, 1992. [26] Hung, J. Y., Gao, W. and Hung, J. C., “Variable Structure Control: A Survey,” IEEE Transactions on Industrial Electronics, Vol. 40, No. 1, pp. 2─22, 1993. [27] Ioannou, P. A. and Sun, J., Robust adaptive control, New Jersey, Prentice-Hall International, Inc., 1996. [28] Khalil, H. K. and Esfandiari, F., “Semiglobal stabilization of a class of nonlinear systems using output feedback,” IEEE Transactions on Auto- matic Control, Vol. 38, No. 9, pp. 1412─1415, 1993. [29] Khalil, H. K., Nonlinear systems, 2nd edition, New Jersey, Prentice-Hall International, Inc, 1996. [30] Letov, A. M., “Conditionally stable control systems(on a class of optimal control systems),” Automat. Remote Contr., No. 7, pp. 649─664, 1957. [31] Liao, T. L., Fu, L. C., and Hsu, C. F., “Output tracking control of nonlinear systems with mismatched uncertainties,” Systems and Control Letters, Vol. 18, pp. 38─47, 1992. [32] Luo, N. and M. de la Sen, “State feedback sliding mode control of a class of uncertain time delay systems,” IEE Proceedings-D Control Theory and Applications, Vol. 140, No. 4, pp. 261─274, 1993. [33] Martin, J. M. and Hewer, G. A., “Smallest destabilzing perturbations for linear systems,” International Journal of Control, Vol. 45, No. 5, pp. 1495─1504, 1987. [34] Matthews, G.P. and DeCarlo, R. A., “Decentralized tracking for a class of interconnected nonlinear systems using variable structure control,” Automatica, Vol. 24, pp. 187-193, 1988. [35] Nguang, S. K., “Robust stabilisation for a class of time-delay nonlinear systems,” IEE Proceedings-D Control Theory and Applications, Vol. 141, No. 5, pp. 285─288, 1994. [36] Oucheriah, S., “Robust sliding mode control of uncertain dynamic de- lay systems in the presence of matched and unmatched uncertain- ties,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 119, pp. 69-72, 1997. [37] Phoojaruenchanachai, S. and Furuta, K., “Memoryless stabilization of uncertain linear systems including time-varying state delays,” IEEE Transactions on Automatic Control, AC-37, No. 7, pp. 1022─1026, 1992. [38] Qu, Z., “Global stabilization of nonlinear systems with a class of un- matched uncertainties,” Systems and Control Letters, Vol. 18, pp. 301─ 307, 1992. [39] Richter, R., Lefebvres, S. and DeCarlo, R., “ Control of a class of nonlin- ear systems by decentralized control,” IEEE Transactions on Automatic Control, Vol. AC-27, pp. 492─494, 1982. [40] Sandeep, “Deterministic controllers for a class of mismatched systems,” Journal of Dynamic Systems, Measurement, and Control, Vol. 116, pp. 17─23, March, 1994. [41] Shen, J. C., Chen, B. S. and Kung, F. C., “Memoryless stabilization of uncertain dynamic delay systems: Riccati equation approach,” IEEE Transactions on Automatic Control, AC-36, No. 5, pp. 638─640, 1991. [42] Shen, J. C., “Designing stabilising controllers and observers for uncer- tain linear systems with time-varying delay,” IEE Proceedings-D Control Theory and Applications, Vol. 144, No. 4, pp. 331─333, 1997. [43] Singh, S. N. and Coelho, A. R., “Nonlinear control of mismatched uncer- tain linear systems and application to control of aircraft,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 106, pp. 203─210, September, 1984. [44] Sira-Ramirez, H., “Non-linear discrete variable structure systems in quasi-sliding mode,” International Journal of Control, Vol. 54, No. 54, pp. 1171─1187, 1991. [45] Sira-Ramirez, H. and Fliess, M., “A sliding mode control approach to predictive regulation,” Control Theory and Advanced Technology, Vol. 10, No. 4, Part 3, pp. 1297-1316, 1995. [46] Slotine, J. J. and Sastry, S. S., “Tracking control of non-linear systems using sliding surfaces with application to robot manipulators”, Interna- tional Journal of Control, Vol. 38, No. 2, pp. 465-492, 1983. [47] Slotine, J. J., “Sliding controller design for nonlinear systems,” Interna- tional Journal of Control, Vol. 40, No. 2, pp. 421─434, 1984. [48] Slotine, J. E. and Li, W., Applied nonlinear control, Prentice-Hall Inter- national, Inc, 1991. [49] Spurgeon, D. K. and Davies, R., “A nonlinear control strategy for robust sliding mode performance in the presence of unmatched uncertainty,” International Journal of Control, Vol. 57, No. 5, pp. 1107─1123, 1993. [50] Utkin, V. I., “Variable structure systems with sliding mode,” IEEE Transactions on Automatic Control, Vol. 4, pp. 212-221, 1977. [51] Utkin, V. I., Sliding modes and their applications in variable structure systems, MIR Publishers, Moscow, 1978. [52] Verghese, G. C., B. Fernandez R. and Hedrick, J. K., “Stable, robust tracking by sliding mode control,” Systems and Control Letters, Vol. 10, pp. 27─34, 1988. [53] Walcott, B. L. and ú Zak, S. H., “Combined observer-controller synthesis for uncertain dynamical systems with applications,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 18, No. 1, pp. 88-104, 1988. [54] Wang, W.J. and Lee, J.L., “Decentralized variable structure control de- sign in perturbed nonlinear systems,” ASME Journal of Dynamics Sys- tems, Measurement and Control, Vol. 115, pp. 551─554, 1993. [55] Wang, J.-D, Lee, T.-L and Juang, Y.-T, “New method to design an Integral variable structure controller, ” IEEE Transactions on Automatic Control, Vol. 41, No. 1, pp. 140-143, 1996. [56] Xu, J. X., Heng, L. T. and Mao, W., “On the design of adaptive deriv- ative estimator using variable structure,” Proceedings of 1995 American Control Conference, pp. 529─533, 1995. [57] Yeung, K. S., Cheng, C. C. and Kwan, C. M., “A unifying design of sliding mode and classical controllers,” IEEE Transactions on Automatic Control, Vol. 38, No. 9, pp. 1422-1427, 1993. [58] Young, K. D., Utkin, V. T. and ¨ Ozg¨uner, ¨ U., “A control engineer’s guide to sliding mode control,” IEEE Transactions on Control Systems Technology, Vol. 7, No. 3, pp. 328─342, 1999. [59] Yu, Y., “On stabilizing uncertain linear systems,” Journal of Optimiza- tion Theory and Applications, Vol. 41, No. 3, pp. 503─507, 1983. [60] ú Zak, S. H., and Hui, S., “On variable structure output feedback con- trollers for uncertain dynamic systems,” IEEE Transactions on Auto- matic Control, Vol. 38, No. 10, pp. 1509─1512, 1993. [61] ú Zak, S. H. and Hui, S., “Output feedback variable structure controllers and state estimators for uncertain/nonlinear dynamic systems,” IEE Proceedings-D Control Theory and Applications, Vol. 140, No. 1, pp. 41- 50, 1993. [62] Zhou, F., Fisher, D. G., “Continuous sliding mode control,” Interna- tional Journal of Control, Vol. 55, No. 2, pp. 313-327, 1992.
|