|
[1] G. C. Verghese, B. C. Levy, and T. Kailath, “A generalized state-space for singular systems”, IEEE Trans. Automat. Control, vol. 26, pp. 811-831, 1981.[2] J. D. Cobb, “Feedback and pole-placement in descriptor variable systems”, Int. J. Control, vol. 33, pp. 1135-1146, 1981.[3] J. D. Cobb, “Controllability, observability, and duality in singular systems”, IEEE Trans. Automat. Control, vol. 29, pp. 1076-1082, 1984.[4] F. L. Lewis, “Preliminary notes on optimal control for singular systems”, Proc. IEEE Conference on Decision and Control, pp. 266-272, 1985.[5] D. J. Bender and A. J. Laub, “The linear-quadratic optimal regulator for descriptor systems”, IEEE Trans. Automat. Control, vol. 32, pp. 672-687, 1987.[6] D. J. Bender and A. J. Laub, “The linear-quadratic optimal regulator for descriptor systems:discrete-time case”, Automatica, vol. 23, pp. 71-85, 1987.[7] Z. Zhou, M. A. Shayman, and T. J. Tarn, “Singular systems:a new approach in the time domain”, IEEE Trans. Automat. Control, vol. 32, pp. 42-50, 1987.[8] L. Dai, Singular Control, System-Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, 1989.[9] K. Furuta and S. Phoojaruenchanachai, “An algebraic approach to discrete-time H-infinite control problems”, Proc. of ACC, San Diego, CA, pp. 3067-3072, 1990.[10] H. S. Wang, C. F. Yung, and F. R. Chang, “Bounded real lemma and H-infinite control for descriptor systems”, IEE Proc. Control Theory Appl., vol. 145, no. 3, pp. 316-322, 1998.[11] M. Sampei, T. Mita, Y. Chida, and M. Nakamichi, “A direct approach to H-infinite control problems using bounded real lemma”, Proc. of the 28th IEEE CDC, pp. 1494-1499, 1989.[12] S. Xu and C. Yang, “H-infinite state feedback control for discrete singular systems”, IEEE Transactions on Automatic Control, vol. 45, no. 7, pp. 1405-1409, 2000.[13] P. Gahinet, A. Nemirovski, A. Laub, and M. Chilali, The LMI Control Toolbox Math Works Inc., 1995.[14] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, SIAM, Philadelphia, 1994.[15] S. Xu and C. Yang, “Stabilization of discrete-time singular systems:a matrix inequalities approach”, Automatica, pp. 1613-1617, 1999.[16] I. Masubuchi, Y. Kamitane, A. Ohara, and N. Suda, “H-infinite control for descriptor systems:a matrix inequalities approach”, Automatica, vol. 33, no. 4, pp. 669-673, 1997.[17] K. L. Hsiung and L.Lee, “Lyapunov inequality and bounded real lemma for discrete-time descriptor systems”, IEE Proc. Control Theory Appl., vol. 146, no. 4, pp. 327-331, 1999.[18] C. H. Fang and L. Lee, “Stability robustness analysis of uncertain discrete-time descriptor systems”, accepted by IFAC Congress, 2002.[19] E. Uezato and M. Ikeda, “Strict LMI conditions for stability, robust stabilization, and H-infinite control of descriptor systems”, Proc. IEEE Conference on Decision and Control, pp. 4092-4097, 1999.[20] M. Chilalij, P. Gahinet, and P. Apkarian, “Robust pole placement in LMI regions”, IEEE Trans. Automat. Control, vol. 44, pp. 2257-2270, 1999.[21] M. Chilali and P. Gahinet, “H-infinite design with pole placement constraints:an LMI approach”, IEEE Trans. Automat. Control, vol. 41, pp. 358-367, 1996.[22] K. L. Hsiung and L. Lee, “Pole-clustering characterization via LMI for descriptor systems”, Proc. of the 36th IEEE CDC, pp. 1313-1314, 1997.[23] C. H. Fang, W. R. Horng, and L. Lee, “Pole-clustering inside a disk for generalized state-space systems:an LMI approach”, Proc. 13th IFAC, vol. G, pp. 209-214, 1996.[24] S. Xu, C. Yang, Y. Niu, and J. Lam, “Robust stabilization for uncertain discrete singular systems”, Automatica, vol. 37, pp. 769-774, 2001.[25] J. L. Chen and L. Lee, “Robust pole clustering for descriptor systems with norm-bounded uncertainty”, Proc. of 2001 ACC, pp. 2953-2954, 2001.[26] S. Xu, J. Lam, and C. Yang, “Robust H-infinite control for uncertain discrete singular systems with pole placement in a disk”, Systems & Control Letters, vol. 43, pp. 85-93, 2001.[27] J. C. Huang, H. S. Wang, and F. R. Chang, “Robust H-infinite control for uncertain linear time-invariant descriptor systems”, IEE Proc.-Control Theory Appl., vol. 147, no. 6, pp. 648-654, 2000.[28] K. M. Zhou and J. C. Doyle, Essentials of Robust Control, Prentice-Hall Inc., New Jersey, 1998.[29] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.[30] M. C. de Oliveira, J. Bernussou, and J. C. Geromel, “A new discrete-time robust stability condition”, Systems & Control Letters, vol. 37, pp. 261-265, 1999.
|