(3.220.231.235) 您好!臺灣時間:2021/03/09 06:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳冠博
研究生(外文):Kuan-Po Chen
論文名稱:使用六氟鈦酸溶液成長氧化鈦薄膜
論文名稱(外文):Growth of Titanium Oxide Films Using Hexafluorotitanic Acid Solution
指導教授:李明逵
指導教授(外文):Ming-Kwei Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:102
中文關鍵詞:氧化鈦酸鹼值電性液相沉積法成長速率
外文關鍵詞:titanium oxideLPDpH valueelectrical pro
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1

中文摘要:
近年來,鈦氧化膜被研究來應用在光學元件和電子元件(如波導、DRAM)已有增加的趨勢。鈦氧化物由於具有高介電常數,高折射係數和高化學穩定性,故有希望應用於上述的方面。
由於傳統成長氧化層的方法,如:分子束磊晶(MBE)、化學氣相沉積(CVD) 、sol-gel等均須在高溫沉積或高溫處理,高溫會對元件造成一定程度的傷害。所以我們研究一種新的技術以“液相沉積法(Liquid Phase Deposition-LPD) ”生長氧化鈦薄膜,其過程簡單、成本低廉、而且成長溫度極低(小於100℃),因此值得廣泛研究和發展。但液相沉積法有一個缺點即是生長速率緩慢.
在過去的研究中,生長速慮緩慢,只有 6Å/min,當初是只以六氟鈦酸和硼酸為主要溶液.為了增加生長速率,我們添加了硝酸到主要溶液當中.另外,我們還研究了添加水,氨水以及氫氧化鋇對於改變溶液中酸鹼值及對氧化膜特性的影響。
對於量測氧化鈦薄膜的電特性和厚度方面,我們是利用電容-電壓曲線(C-V Curve) ,漏電流密度-電場強度曲線(J-E Curve)和反射式光譜儀,可瞭解薄膜的介電常數(εr)、漏電效應並得知平帶電壓偏移(VFB) 、有效電荷密度(Qeff)以及厚度,折射係數。結果,我們得之可以藉由添加硝酸和添加適量的氨水來調變pH值可以增加成長速率,由 6 Å/min 增加到 475 Å/min,電特性也可以改善,介電常數(εr)也增加到 36.03。


In recent years, titanium oxide thin film has been studied extensively for using in optical devices and electronic devices such as waveguide and future ultra-large scale dynamic random access memory (DRAM). Titanium oxide film is very promising candidates for applications with exhibiting higher dielectric constant, high refractive index and high chemical stability.
Liquid phase deposition is a novel method to grow oxide layer. It has the advantage of low-temperature deposition, good step coverage, and selective growth. We use this technology to deposition titanium oxide film instead of the conventional methods of growth titanium oxide film, such as sol-gel, sputtering, LPCVD, APCVD, and PECVD. But low deposition rate is one of the drawbacks drawbacks of LPD process.
In previous study, deposition rate of titanium oxide films was very slow (6Å/min). The mixture of H2TiF6(aq) and H3BO3(aq) was used as the principal solution. In this study, we incorporated HNO3(aq) into the principal solution for enhance the deposition rate. In addition, we study the deposition rate and dielectric constant of titanium oxide films as functions of H2O addition, NH4OH(aq), and Ba(OH)2(aq) concentrations in our principal solution.
We examine electrical characteristics and thickness of the titanium films by capacitance-voltage measurement and Spectroscopic Reflectance. The deposition rate of titanium oxide film increases from 6 Å/min to 475Å/min and the dielectric constant is about 36.1 with adding HNO3 and opportune NH4OH into the principal solution.


CONTENTS
LIST OF FIGURES………………………………………I
ABSTRACT………………………………………………V
1.INTRODUCTION..…………………………………………1
1-1Developments in DRAM………………………………1
1-2High Dielectric Constant Material……………………1
1-3Background of Liquid Phase Deposition (LPD) in Our Labortary………………………………………………2
1-3-1 LPD-SiO2…………………………………………………………………………………2
1-3-2 LPD-SiON and Biased-LPD-SiON …………………………4
1-3-3 LPD-TiO2 and new mechanism of LPD-TiO2 by
incorporating nitric acid……………………………………6
1-4Advantages of LPD Deposition…………………………………8
2.EXPERIMENTS………………………………10
2-1 Deposition System……………………………………10
2-2 Cleaning of Silicon Substrate…………………………11
2-3 Preparation of Deposition Solution……………………12
2-4 Film Deposition………………………………………14
2-5 Fabrication of MOS Structure………………………15
2-6 Characteristics………………………………………16
2-6-1 Physical Properties………………………………………16
2-6-2 Chemical Properties………………………………………16
2-6-3 Electrical Properties………………………………………17
3.RESULTS AND DISCUSSION ………………………19
3-1 Effect of HNO3 and H3BO3…………………………………19
3-1-1 Deposition Rate and Refractive Index as a Function of HNO3 Volume……………………………………………………19
3-1-2 Deposition Rate, Refractive Index and Dielectric Constant as a Function of H3BO3 Molarity……………………………20
3-1-3 Deposition Rate, Refractive Index and Dielectric Constant as a Function of H3BO3 Molarity with Different HNO3 Volume……………………………………………………22
3-1-4 C-V Measurement …………………………………………22
3-1-5 Analyses of FTIR Spectrum ……………………………23
3-1-6 SIMS Depth Profile of Titanium Oxide Films……………23
3-2 Effect of H2O …………………………………………25
3-2-1 Deposition Rate, Refractive Index and Dielectric Constant as a Function of H2O Volume ……………………………25
3-2-2 Analyses of FTIR Spectrum ………………………………26
3-3 Effect of NH4OH………………………………………26
3-3-1 Deposition Rate, Refractive Index and Dielectric Constant as a Function of NH4OH Morality …………………………26
3-3-2 Deposition rate, Refractive Index and Dielectric Constant as a Function of NH4OH Volume …………………………27
3-3-3 Thickness and Refractive Index as a Function of Time.............29
3-3-4 Deposition Rate, Refractive Index and Dielctric Constant as a Function of NH4OH Molarity ……………………29
3-3-5 SIMS Depth Profile of Titanium Oxide Films ………31
3-3-6 C-V Measurement ………………………………………31
3-3-7 J-E Measurement …………………………………………32
3-3-8 Analyses of FTIR Spectrum …………………………32
3-3-9 SEM Photograph of Titanium Oxide Film………………33
3-4 Effect of Ba(OH)2………………………………………33
3-4-1 Deposition rate, Refractive Index and Dielectric Constant as a Function of B1(OH)2 Volume …………………………33
3-4-2 J-E Measurement …………………………………………34
3-4-3 Analyses of FTIR Spectrum ………………………………35
3-5 X-ray Diffraction (XRD) of Titanium Oxide Films Deposition on Silicon Substrate ……………………35
3-6 Relationship Between pH Value and Deposition Solution…………………………………………………..36
4.CONCLUSIONS ………………………………..….37
Reference ……………………………………………78
LIST OF FIGURES
Figure 1. Schematic diagram of liquid phase deposition (LPD) system …39
Figure 2(a). Deposition flowchart for preparing LPD-titanium oxides films …………………………………………………………40
Figure 2(a). Deposition flowchart for preparing LPD-titanium oxides films ……………………………………………………………41
Figure 3. MOS structure fabrication processes ……………………………42
Figure 4. Deposition Rate and Refractive Index as a Function of HNO3 Volume …………………………………………………………43
Figure 5. Deposition Rate and Dielectric Constant as a Function of HNO3 Volume …………………………………………………………44
Figure 6. Deposition Rate and Refractive Index as a Function of H3BO3 Molarity …………………………………………………………45
Figure 7. Deposition Rate and Dielectric Constant as a Function of H3BO3 Molarity …………………………………………………………46
Figure 8. Deposition Rate and Refractive Index as a Function of H3BO3 Molarity …………………………………………………………47
Figure 9. Deposition Rate and Dielectric Constant as a Function of Molarity of H3BO3 …………………………………………………………48
Figure 10. Flat Band Voltage as a Function of H3BO3 Molarity…………49
Figure 11. High Frequency (1MHz) C-V …………………………………50
Figure 12. FTIR Spectrum of Titanium Oxide Film ………………………51
Figure 13. SIMS depth profile of deposited titanium oxide films deposited on silicon substrate …………………………………………………52
Figure 14. Deposition Rate and Refractive Index as a Function of H2O Volume …………………………………………………………53
Figure 15. Deposition Rate and Dielectric Constant as a Function of H2O Volume …………………………………………………………54
Figure 16. TIR Spectrum of Titanium Oxide Film …………………………55
Figure 17. Deposition Rate and Refractive Index as a Function of NH4OH Morality …………………………………………………………56
Figure 18. Deposition Rate and Dielectric Constant as a Function of NH4OH Molarity …………………………………………………………57
Figure 19. Deposition Rate and Refractive Index as a Function of NH4OH Volume …………………………………………………………58
Figure 20. Deposition Rate and Refractive Index as a Function of NH4OH Volume …………………………………………………………59
Figure 21. Thickness and Refractive Index as a Function of Time …………60
Figure 22. Deposition Rate and Refractive Index as a Function of NH4OH Molarity …………………………………………………………61
Figure 23. Deposition Rate and Dielectric Constant as a Function of NH4OH Molarity …………………………………………………………62
Figure 24. SIMS depth profile of titanium oxide film deposited on silicon substrate for process B …………………………………………63
Figure 25. SIMS depth profile of titanium oxide film deposited on silicon substrate for process B …………………………………………64
Figure 26. Flat Band Voltage as a Function of Various NH4OH Molarity…65
Figure 27. High Frequency (1MHz) C-V …………………………………66
Figure 28. J_E Curves as Functions of Various NH4OH Molatity …………67
Figure 29. FTIR Spectrum of Titanium Oxide Film ………………………68
Figure 30. SEM photograph of titanium oxide film deposited on silicon(a) cross-sectional view (b) top view ………………………………69
Figure 31. Deposition Rate and Refractive Index as a Function of Ba(OH)2 Volume …………………………………………………………70
Figure 32. Deposition Rate and Dielectric Constant as a Function of Ba(OH)2 Volume …………………………………………………………71
Figure 33. J-E Curves as Functions of Various Ba(OH)2 Volume …………72
Figure 34. FTIR Spectrum of Titanium Oxide Films ………………………73
Figure 35. X-ray diffraction (XRD) pattern of titanium oxode film deposited on silincon substrate ……………………………………………74
Figure 36. Titanium Concentration versus pH Value ………………………75
Figure 37. Relationship Between pH Value and Deposition Solution ………76
LIST OF TABLE
Table 1. Electronegativity …………………………………………………77
Table 2. Nature of vibrational groups of titanium oxide films ……………77


REFERENCES[1]Kinam Kim, Chang-Gyu Hwang, Senior Member, IEEE, and Jong Gil Lee, “DRAM Technology Perspective for Gigabit Era,” IEEE Trans. Electron Devices, vol. 45, pp. 598-608, March. 1998.[2]Q. X. Jia, L. H. Chang, and W. A. Anderson, “Low leakage current BaTiO3 thin film capacitors using a multilayer construction,” Thin Solid Films, vol. 259, pp. 264-269, 1995.[3] S. Kamiyama, P. Y. Lesaicherre, H. Suzuki, A. Sakai, I. Nishiyama and A. Ishitani, “Ultrathin tantalum oxide capacitor dielectric layers fabricated using rapid thermal nitridation prior to low-pressure chemical-vapor-deposition”, J. Electrochem. Soc., vol 140, Iss. 6, pp. 1617-1625, 1993.[4] Y. H. Lee, K. K. Chan and M. J. Brady, “Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor,” J. Vac. Sci. & Technol., vol. 13, Iss 3, pp. 596-601, 1995.[5] Y. Abe and T. Fukuda, “TiO2 thin films formed by electron cyclotron resonance plasma oxidation at high temperature and their application to capacitor dielectrics,” Jpn. J. Appl. Phys. Part 2-Letts, vol. 33, Iss 9A, pp. L1248-L1250, 1994.[6] T. W. Kim, Y. S. Toon, S. S. Yom, and C. O. Kim, “Ferroelectric BaTiO3 films with a high magnitude dielectric constant grown on p-Si by low-pressure metalorganic chemical vapor deposition,” Appl. Surface. Science., vol.90, Iss. 1, pp. 75-80, 1995.[7] K. Koyama, T. Sakuma, S. Yamamichi, Watanabe and H. Aoki, “A stacked capacitor with (BaxSr1-x)TiO3 for 256M DRAM,” in IEDM Tech. Dig., pp. 823-826, 1991,[8] E. Tokumitsu, Ryo-ichi Nakamura and H. Ishiwara, “Nonvolatile memory operations of metal-ferroelectric insulator-semiconductor(MFIS) FET’s using PLZT/STO/Si(100) structures,” IEEE Electron Device Lett., vol. 18, no. 4, pp. 160-162, 1997.[9] K. J. Sladek and H. M. Herron. Ind. Enr. Chem. Prod. Res. Develop.,11(1972)92.[10] M. A. Butler and D. S. Ginley. J. Mat. Sci., 15(1980)19.[11] T. Carlson and G. L. Griffin, J. Phys. Chem., 90(1986)5896.[12] G. Q. Lo, D. L. kwong and S. Lee, “Reliability characteristics of metal-oxide-semiconductor capacitors with chemical vapor deposited Ta2O5 gate dielectrics,” Appl. phys. Lett., vol. 62, no. 9, pp. 973-975, 1993.[13] Y. S. Yoon, W. N. Kang, H. S. Shin, S.S.Yom, T. W. Kim, Jong Yong Lee, D.J. Choi and S-S. Baek, “Structural properties of BaTiO3 thin films on Si grown by metalorganic chemical vapor deposition,” in J. Appl. Phys., vol. 73, no. 3, pp. 1547-1549, 1993.[14] C. H. Lee and S. J. Park, “Preparation of ferroelectric BaTiO3 thin films by metal organic chemical vapour deposition,” Journal of Materials Science: Materials in Electronics 1, pp. 219-224, 1990.[15] In-Tae Kim, Jin Wook Jang, Hyuk-Joon Youn, Chang Hoon Kim and Kug Sun Hong, “180o ferroelectric domains in polycrystalline BaTiO3 thin films,” Appl. Phys. Lett., vol. 72, no. 3, pp. 308-310, 1998.[16] K. A. Vorotilov, E. V. Orlova and V. I. Petrovsky, “Sol-gel TiO2 films on silicon substrates”, Thin solid films , vol 207, Iss 1-2, pp. 180-184 , 1992.[17] D. Guerin and S. I. Shah, “Reactive sputtering of titanium-oxide thin films”, J. Vac. Sci. Technol. A, vol 15, Iss 3, pp. 712-715, 1997.[18] H. K. Ha, M. Yoshimoto, H. Koinuma, B. K. Moon and H. Ishiwara, “Open air plasma chemical vapor deposition of highly dielectric amorphous TiO2 films”, Appl. Phys. Lett. , vol 68, Iss 21, pp. 2965-2967,1996.[19] N. Rausch and E. P. Burte, “Thin TiO2 films prepared by low-pressure chemical vapor-deposition”, J. Ectrochem. Soc. , Vol 140, Iss 1, pp 145-149,1993.[20] A. Turkovic, M. Ivanda, A. Drasner, V. Vranesa and M. Persin, “Raman-spectroscopy of thermally annealed TiO2 thin films”, Thin solid films, vol 198, Iss 1-2, pp. 199-205, 1991.[21] H. S. Kim, D. C. Gilmer, S. A. Campbell and D. L. Polla, “Leakage current and electrical breakdown in metal-organic chemical-vapor-deposited TiO2 dielectrics on silicon substrates”, Appl. Phys. Lett. , vol 69, Iss 25, pp 3860-3862, 1996.[22] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter and J. H. Yan, “MOSFET transistors fabricated with high permitivity TiO2 dielectrics”, IEEE Tran. Electron Devices, vol 44, Iss 1, pp. 104-109, 1997.[23] A. M. Glass, “Optical-materials”, Science, vol 235, Iss 4792, pp 1003-1009, 1987.[24]K. E. Katz, “Oxidation,” VLSI Technology ( 2nd ed. ) ( S.M.Sze ), McGrow-Hill, New York, pp. 98, 1988.[25]S. V. Nguyen, D. Dobuzinsky, D. Dopp, R. Gleason, S. Fridmann, and M. Gibson, “Plasma-Assisted Chemical Vapor Deposition and Characterization of High Quality Silicon Oxide Films,” Thin Solid Films, vol. 193, Iss 1-2, pp. 595-609, 1990.[26]Y. N. Sun, E. N. Farabaugh, and A. Feldman, “X-ray Photoelectron-Spectroscopy of O 1s and Si 2p Line in Films of SiOx Formed by Electron-Beam Evaporation,” Thin Solid Films, vol. 11, Iss 3, pp. 351-360, 1988.[27]J. Kortlandt and L. Oosting, “Deposition and Properties of RF Reactively Sputtered SiO2 Layers,” Solid State Tech., vol. 25, Iss 10, pp. 153-159, 1982.[28]H. Kawazoe, and K. Seki, “Growth Mechanisms of Silica Glass Using the Liquid Phase Deposition ( LPD ),” J. Non-cryst. Solids, vol. 151, Iss. 1-2, pp. 102-108, 1992.[29]H. Nagayama, H. Honda, and H. Kamahara, “A New Process for Silica Coating,” J. Electrochem. Soc., vol. 135, Iss. 8, pp. 2013-2016, 1988.[30]R. I. Hegde, P. J. Tobin, K. G. Reid, Bikas Maiti, and S. A. Ajuria, “Growth and Surface Chemistry of Oxynitride Gate Dielectric Using Nitric oxide,” Appl. Phys. Lett., vol. 66, Iss. 21, pp. 2882-2884, 1995.[31]M. J. Rand and J. F. Robert, “Silicon Oxynitride Films from the NO-NH3-SiH4 Reaction,” J. Electrochem. Soc., vol. 120, p446, 1973.[32]T. Honda, K. Niihara, T. Hirai, F. Itoh, and K. Suzuki, “Chemical-Bond of CVD-Si3N4 by Compton-Scattering Measurement,” J. Phys. Soc. Jpn, vol. 48, Iss. 2, pp. 561-566, 1980.[33]R. S. Rosler, W. C. Benzing and J. Baldo, “A Production Reactor for Low Temperature Plasma-Enhanced Silicon Nitride Deposition,” Solid State Tech., vol. 19, p.45, 1976.[34]S.B. Desu,” Ultra-thin TiO2 films by novel method,” Materials Science and Engineering-B, vol. 13, Iss. 4, pp. 299-303, 1992.[35]J. Aarik, A. Aidla, T. Uustre, and V. Sammelselg, ”Morphology and structure of TiO2 thin films grown by atomic layer depositon,” J. Crytal Growth, vol. 148, Iss. 3, pp. 268-275, 1995.[36]T. Fuyuki, H. Matsunami, and T. Kobayashi, “Effects of Small Amount of Water on Physical and Electrical-Properties of TiO2 Films Deposited by CVD Method,” J. Electrochem. Soc., vol. 135, Iss. 1, pp. 248-250, 1988.[37]Y. Abe and T. Fukuda, “TiO2 Thin-Films Formed by Electron- Cyclotron-Resonance Plasma Oxidation at High-Temperature and Their Application to Capacitor Dielectrics,” Jpn. J. Appl. Phys. Part 2 Letts., vol. 33, Iss 9A, pp. L1248-L1250, 1994.[38]K. Fukushima and I. Yamada, “Surface Smoothness and Crystalline-Structure of ICB Deposited TiO2 Films,” Appl. Sur. Sci., vol. 43, Iss DEC, pp. 32-36, 1989.[39]L. J. Meng and M. P. Dossantos, “ Investigations of titanium oxide films deposited by d.c. reactive magnetron sputtering in different sputtering pressures,” Thin Solid Films, vol. 226, Iss. 1, pp. 22-29, 1993.[40]Y. H. Lee, K. K. Chan and M. J. Brady, ”Plasma-Enhanced Chemical-Vapor-Deposition of TiO2 in Microwave-Radio Frequency Hybrid Plasma Reactor,” J. Vac. Sci. & Technol., vol. 13, Iss 3, pp. 596-601, 1995.[41]H. Y. Lee and H. G. kim, “ The role of gas-phase nucleation in the preparation of TiO2 films by chemical vapor deposition,” Thin solid Films, vol. 229, Iss. 2, pp. 187-191, 1993.[42]Sorab, K. Ghandhi, “Etching and Cleaning,” VLSI Fabrication Principles (2nd ed.), Wiley Interscience, New York, pp. 591, 1994.[43]T.Homma, Tgoda, et al. ”A new Interlayer Formation Technology for completely Planarized Multilevel Interconnection by Using LPD”, Symposium on VLSI Technology,p.3,1990[44]K. Kanba,T .Homma,et al., “A 7 Mask CMOS Technology Utilizing Liquid Phase Selective Oxide Deposition” , IEDM Tech. Dig. ,p.637,1991 [45]C. F. Yeh, S. S. Lin., el al. “Novel Technique for SiO2 Formed by Liquid Phase Deposition for low Temperature Processed Polysilicon TFT” , IEEE Electron Dev. Letts., EDL-14,p.403,1993.[46] S. K. Ghandhi, “Etching and Cleaning”, VLSI Fabrication Principles (2nd ed.), Wiley Interscience, New York, 1994.[47] J. S. Chou and S. C. Hung and J. S. Shie, “The Intitail Growth Mechanism of Silicon Oxide by Liquid-Phase Deposition”J. Electrochem. Soc ., vol. 141, No 11,p.3214, 1994.[48] D. Sxarpiello and W. Copper, J. Chem. Data 9, p363,1964.[49] P. H. Chang, C. T. Huang and J. S. Shie, “On liquid-Phase Deposition of Silicon Dioxide by Boric Acid Addition”, J. Electrochem. Soc., vol. 144, No 3, p. 1144, 1997. [50] M. J. Shapiro, S. V. Nguyen, T. Matsuda, and D. Dobuzinsky, “CVD of Fluorosilicate Glass for ULSI Applications”, Thin Solind Films, vol. 270, pp.530, 1995.[51] Sorab K. Ghandhi,“Etching and Cleaning”, in VLSI Fabrication Principles (2nd ed.), Wiley Interscience, New York, p. 591, 1994[52] T. Takahagi, et al., “The Formation of Hydrogen Passivated Silicon Single-Crystal Surface Using Ultraviolet Cleaning and HF etching”, America institute of Physics, p. 3516,1988.[53] V. G. Erkov, S. F. Devyatova, E. L. Molodstova, Y. V. Malsteva, U. A. Yanovskii, “Si-TiO2 Interface Evolution at Prolonged annealing in Low Vacuum or N2O Ambient”, Appl. Surf. Sci., vol. 166, pp.51-56, 2000.[54] Y. Gao. , Thin solid film, 346, p 73~81, 1999[55] J. J. Cheng and D. W. Wang, “Structure Transformation of the TiO2-SiO2 System Gel During Heat-treatment”, J. Non-cryst. Sol., vol. 100, pp.288-291, 1988.[56] M. S. Morey, J. D. Bryan, S. Schwarz, G. D. Stucky. , Chem. Mater. Vol. 12, p 3435~3444, 2000[57] P. Lange, H. Bernt, E. Hartmannsgruber, and f. Naumann, J. Electrochem. Soc., 141, pp.259, 1994.[58] M. K. Lee, B. H. Lei, and C. H. Lin, “Oxynitride Prepared by Liquid Phase Deposition”, Jpn. J. Appl. Phys., vol. 36, pp. L979, 1997 [59]M. K. Lee, S. Y. Lin, and J. M. Shyr,“Characteristics of Oxynitride Prepared by Liquid Phase Deposition”, J. Electrochem. Soc., vol. 148, pp. F1, 2001 [60] SEMICONDUCTOR DEVICES physics and Technology, S. M. SZE, p. 452[61] Dacid R. Lide, “Strength of Chemical Bonds”, HANDBOOK of CHEMISTRY and PHYSICS 80TH, CRC Press 12, pp.8-9, 1999.[62] Y.Gao*,“In-situ IR and spectroscopic ellipsometric analysis of growth process and structural properties of Ti1-xNbxO2 thin films by metal-organic chemical vapor deposition”, thin solid films, 346, p.73, 1999[63] V. G. Erkov, S. F. Devyatova, E. L. Molodstova, Y. V. Malsteva, U. A. Yanovskii, “Si-TiO2 Interface Evolution at Prolonged annealing in Low Vacuum or N2O Ambient”, Appl. Surf. Sci., vol. 166, pp.51-56, 2000.[64] N. M. Laptash, O. G. Maslennikova, Y. a. Kaidalova, “ammonium Oxofluorotitanates”, H. Fluo. Chem., vol. 99, pp.133-137, 1999.[65] J. J. Cheng and D. W. Wang, “Structure Transformation of the TiO2-SiO2 System Gel During Heat-treatment”, J. Non-cryst. Sol., vol. 100, pp.288-291, 1988.[66] M.S. Morey, J. D. Bryan, S. Schwarz, and G. D. Stucky, “Pore Surface Functionalization of MCM-48 Mesoporous Silica with Tungsten and Molybdenum Metal Centers : Perspectives on Catalytic Peroxide Activation”, Chem. Mater. 12, p. 3435, 2000[67] P. Lange, H. Bernt, E. Hartmannsgruber, and f. Naumann, J. Electrochem. Soc., 141, pp.259, 1994.[68] K. S., H. I.a* , H. H. b*, K. T., “Low-temperature synthesis of anatase thin films on glass and organic substrates be direct deposition from aqueous solution”, thin solid film, 351, p. 220, 1999[69] S. M. SZE, SEMICONDUCTOR DEVICE physics and Technology, p. 452

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔