跳到主要內容

臺灣博碩士論文加值系統

(3.235.140.84) 您好!臺灣時間:2022/08/15 02:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:殷壽志
研究生(外文):Chou-Chih Yin
論文名稱:製作與量測以BCB/Ta2O5/SiO2為結構之抗共振反射波導
論文名稱(外文):Fabrication and Characterization of BCB/Ta2O5/SiO2 ARROW waveguides
指導教授:趙健祥
指導教授(外文):Chien-Hsiang Chao
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:45
中文關鍵詞:抗共振反射波導高分子材料
外文關鍵詞:ARROW waveguidesBCB polymer
相關次數:
  • 被引用被引用:5
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本論文中我們提出以BCB polymer高分子材料作為導光層的抗共振反射波導(BCB polymer/ Ta2O5/ SiO2 waveguide),波導結構材料包含以二氧化矽作為第二披覆層、五氧化二鉭作為第一披覆層以及BCB polymer作為導光層。在波導元件製作上以反應式離子蝕刻(RIE)蝕刻出波導形狀,其使用的反應氣體為SF6與O2,比例是1.5:1,由於BCB polymer具有很大的熱膨脹係數,將會造成很大的熱應力,因此使用NiCr金屬作為蝕刻保護層則可以承受熱應力的影響,避免龜裂現象的發生。
我們利用cut back的方式量測BCB polymer/ Ta2O5/SiO2抗共振反射波導的傳輸損耗,且獲得BCB polymer對蝕刻保護材料良好的乾蝕刻蝕刻比,而此波導針對1.3μm量測得到在TE極化傳輸損耗為1.13dB/cm、TM極化傳輸損耗為2.56dB/cm。
A BCB Polymer/Ta2O5/SiO2 antiresonant reflecting optical waveguide (ARROW) at quasi-antiresonant condition is presented. The waveguide consists of the SiO2 second cladding, the Ta2O5 first cladding, and the BCB core. The lateral guiding of the ARROW waveguide was formed by reactive ion etching based on SF6 and O2 mixtures (SF6 : O2 =1.5 : 1). A metal layer Ni/Cr thin films were used as the etch mask to avoid cracking of the mask caused by large thermal expansion coefficient of the BCB Polymer.
The waveguide losses were measured by the cut back method. Large dry-etching aspect ratio of the BCB polymer to the etch mask was obtained. For TE polarized light, the propagation loss of the waveguide was 1.12 dB/cm at 1.3μm. The propagation loss for TM polarized light was 2.56 dB/cm.
第一章導論 1
第二章抗共振反射波導之理論分析 5
第一節抗共振反射波導的結構及工作原理 5
第二節抗共振反射波導與單模光纖之模擬計算分析 7
第三節結果與討論 13
第三章波導製程材料分析與成長 14
第一節蝕刻保護材料的成長 14
第二節保護材料的蝕刻 16
第三節製程材料特性與薄膜間熱應力的關係 18
第四節結果與討論 21
第四章元件製程 23
第一節ARROW waveguide的製作流程 23
第二節結果與討論 30
第五章導波的量測結果與分析 31
第一節ARROW waveguide的量測 31
第二節結果與討論 33
第六章結論 34
1.Michel A. Rosa, Nam Q. Ngo, Denis Sweatman, Sima Dimitrijew, and H. Barry Harrison, “Self-alignment of optical fibers with optical quality end-polish silicon rib waveguides using wet chemical micromaching techniques,” IEEE J. Selected Topics in Quantum Electronics, Vol.5, No.5, pp.1249-1254, 1999.
2.Peter A. Andrekson, and Arne Alping, “Optoelectronic properties of semiconductors lasers butt-coupled to optical fibers,” IEEE J. Quantum Electronics, Vol.24, No.10, pp.2039-2044, 1988.
3.Toshihiko Baba and Yasuo Kokubun, “High efficiency light coupling from antiresonant reflecting optical waveguide to integrated photodector using an antireflecting layer,” Applied Optics, Vol.29, No.18, pp.2781-2791, 1990.
4.Timothy S. Barry, Daniel L. Rode, senior Member, IEEE, Maecelo H. Cordaro, Student Member, IEEE, Robert R. Krchnavek, Membber, IEEE, and Kenichi Nakagawa, “Efficient multimode optical fiber-to-waveguide coupling for passive alignment application in multichip modules,” IEEE Transaction on Components, Packaging, and Manufacturing Technology-part B, Vol.18, No.4, pp.685-689, 1995.
5.Randall B. Wilson and Robert A. Boudreau, ”Single-mode laser/fiber coupling yields using silicon v-groove passive alignment,” AMP Journal of Technology, Vol.4, pp.41-48, 1995.
6.Kazuhiko Kurata, Kenji Yamauchi, Atsuhiro Kawatani, Hideki Tanaka, Hiroshi Honmou, and Shigeta Ishikawa, “A surface mount single-mode laser module using passive alignment,” IEEE Transaction on Components. Packaging. And Manufacturing Technology-Part B, Vol.19, No.3, pp.524-530, 1996.
7.A. G. Rickman, G. T. Reed, and Fereydoon Namavar, “Silicon- on- Insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technology, Vol.12, No.10, pp.1771-1776, 1994.
8.M. A. Duguay, Y. Kokubun, and T. I. Koch, “Antiresonant reflecting optical waveguide in SiO2-Si multiplayer structures,” Appl. Phys. Lett. , Vol.49, pp.1377-1379, 1995.
9.D. F. Clark and B. Smith, “Antiresonant reflecting optical waveguides formed from solgel films,” Optical Society of America, Vol.20, No.12, pp.1377-1379, 1995.
10.T. Baba and Y. Kokubun, “Low-loss antiresonant reflection optical waveguide on Si substrate in visible-wavelength region,” Electron. Lett. , Vol.22, pp.892-893, 1986.
11.Jacek M. Kubica, Jerzy Gazecki and Geoffrey K. Reeves, “Multimode operation of ARROW waveguides,” Optics Communications, Vol.102, pp.217-220, 1993.
12.M. D. Feit and J. A. Fleck, Jr., “Computation of mode properties in optical fiber waveguides by a propagating beam method,” Applied Optics, Vol.19, No.7, pp.1154-1164, 1980.
13.W. P. Huang, Member, IEEE, and C. L. Xu, “ Simulation of Three- Dimensional Optical Waveguides by a Full-Vector Beam Propagation Method,” IEEE J. Quantum Electronics, Vol.29, No.10, pp.2639-2649, 1993.
14.Weiping Huang, Member, IEEE, Chenglin Xu, Student Member, IEEE, Sai-Tak Chu, Member, IEEE, and Sujeet K. Chaudhuri, Senior Member, IEEE, “The Finite-Difference Vector Beam Propagation Method: Analysis and Assessment,” J. Lightwave Technol., Vol.10, No.3, pp.295-304, 1992.
15.R. J. Shul, C. T. Sulivan and G. B. McClellan, “Anisotropic ECR etching of benzocyclobutene,” Electronics Letters, Vol.31, No.22, pp.1919-1921, 1995.
16.M. S. Shivaraman and C. M. Svensson, “Control of Palladium Adherence to Silicon Dioxide for Photolithographic Etching,” J. Electrochem. Soc.: SOLID-STATE SCIENCE AND TECHNOLOGY, pp.1258, 1976.
17.Miao-Ju Chuang, “Radio frequency sputtered Ta2O5 for application in photonics,” Doctor of philosophy, Institute of Materials science and engineering, National Sun Yat-sen University, pp.78-87, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top