跳到主要內容

臺灣博碩士論文加值系統

(18.204.56.185) 您好!臺灣時間:2022/08/14 01:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:熊思愷
研究生(外文):Szu-kai Hsiung
論文名稱:實驗方法探討質子交換膜燃料電池在不同設計條件及製作方式下對性能影響之研究
論文名稱(外文):The research of using different experiments to develope the effect of PEMFC performance in changing different design conditions andmanufacture method
指導教授:陳龍正陳龍正引用關係
指導教授(外文):Long-Jeng Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:101
中文關鍵詞:質子交換膜膜極組流道面積比
外文關鍵詞:PEMFCMEAFlow area ratio
相關次數:
  • 被引用被引用:10
  • 點閱點閱:1780
  • 評分評分:
  • 下載下載:363
  • 收藏至我的研究室書目清單書目收藏:2
摘要
本研究採用Nafion 112為主體的膜極組(MEA)進行單一電池的實驗及分析。藉著改變多種不同設計參數及製作條件,探討其對於質子交換膜燃料電池性能輸出影響。實驗條件包含單一電池的暫態分析、螺栓鎖固反應室所施加扭矩、流道型式、氧化劑側不同型式觸媒及含量、電子收集板材質、進氣壓力、氧化劑種類及質子交換膜含水量等,而實驗結果可供未來組裝電池組的參考。
實驗結果發現,質子交換膜燃料電池在低溫下可快速啟動並迅速達到穩定的輸出電壓,此外反應室施加扭矩有一最佳範圍,扭矩適當可使電極與電子收集板間的接觸電阻達到最小,得到較佳的功率輸出。而在流道設計方面,當流道面積比為58.41%時,流道面積與電子傳導面積間的比例較佳,可得到較高的輸出功率。另外藉改變氧化劑側白金觸媒含量,經實驗證明確實可明顯改善燃料電池的輸出功率。
而當電子收集板材質使用金箔時,其性能輸出較使用石墨為高,但金箔的價格較為昂貴。另外在改變不同氧化劑方面,由實驗證實若使用氧氣所得到之功率明顯較使用空氣為佳。而在質子交換膜含水量方面,將交換膜放入去離子水中加熱可補充交換膜在壓製時所失去的水份,使交換膜保持在濕潤狀態對性能輸出有明顯助益。
關鍵字:質子交換膜、膜極組、流道面積比。
Abstract
The experimental tests and analysis of single fuel cell unit are performance in this research, and the electrolyte in MEA(membrane and electrode assembly) we used Nafion 112.Accroding to change several design factors and operation conditions, we can find out how important the factors affect the PEMFC power output. The experimental conditions in this study are various of type of fasten torque, flow channels, oxidizers, catalyst type and loading in cathode side, materials of electron collector, inlet gas pressure and humidification of membrane. The results can provide us references to assemble a fuel cell stack in future.
PEMFC can start quickly at low temperature and achieves stable output voltage. When the 4 N-m torque is applied to fasten the reaction chamber, the contact resistance between the electrode and electron collector reaches a minimum value. The results show that when the area ratio(Af /At)is 58.41%, we can have better ratio between channel areas and contact area, and the output can be larger. We found that increasing the loading of catalyst in the cathode, the power output rises up clearly, but the loading also has a limitation.
By using gold to be the electron collector, the result shows that it has better performance than using graphite, but the price is also much higher. Our experiments display that use oxygen to be oxidizer can have better performance than use air. When we heated membrane in the water at 80℃, it can resupply the water in the membrane, remain enough humidification of membrane can be clearly helpful to the PEMFC power output, because humidification can keep the proton conductivity of the membrane in good condition. And we also found while the hot press pressure at 160atm, the performance can be better than using other pressure.
Key words : PEMFC、MEA、Flow area ratio
目錄
摘要……………………………………………..………….…..I
英文摘要………………………………………………………II
目錄…………………………………………..……………….III
圖目錄………………………………………..……………….VI
表目錄……………………………..……………………..…...X
符號說明……………………………………………………...XI
第一章緒論
1.1前言………………………………………………….1
1.2 燃料電池初步介紹…………………………………2
1.3 燃料電池分類………………………………………3
1.4 研究目的……………………………………………4
1.5文獻回顧…………………………………………….7
第二章質子交換膜燃料電池之優點與結構分析
2.1 質子交換膜燃料電池的優點………………………14
2.2 質子交換膜燃料電池結構分析……………………15
2.2.1 固態高分子薄膜(質子交換膜)……….…….16
2.2.2 催化劑……………………………………….17
2.2.3 電極………………………………………….18
2.2.4 流場板……………………………………….18
2.2.5 電子收集板………………………………….19
2.2.6 墊圈………………………………………….19
第三章PEM燃料電池的反應機制
3.1 質子交換膜燃料電池的作用原理………….…….21
3.2 質子交換膜燃料電池的反應機制………………..23
第四章實驗設備與性能量測
4.1 實驗設備………………………………………….30
4.1.1 實驗設備主要硬體…………………………30
4.1.2 量測元件……………………………………31
4.2 性能測試………………………………………….33
4.2.1 膜極組壓製實驗….…...……………………33
4.2.2 氣體流道加工………………………………35
4.2.3 單一電池組裝………………………………35
4.2.4 管件防漏測試………………………………36
4.2.5工作平台及單一電池的啟動步驟.…………36
4.2.6 實驗步驟……………………………………37
第五章實驗結果與討論
5.1 實驗條件………………………………….………40
5.2 單一電池暫態分析……………………………….42
5.3 螺栓鎖固反應室所施加的扭矩………………….43
5.4 流道設計之影響.…………………………………45
5.5 氧化劑側不同型式觸媒及含量………………….46
5.6 電子收集板的材質……………………………….47
5.7 進氣壓力之影響………………………………….48
5.8 氧化劑種類……………………………………….49
5.9質子交換膜含水量………………………………..50
5.10 不同熱壓壓力之影響…………………………...51
第六章結論與建議
6.1 結論……………………………………………….56
6.2 未來可進行之工作……………………………….58
參考文獻……………………………………………….…..59
參考文獻
1. "Performance of polymer electrolyte membrane fuel cell(PEMFC) stacks Part I. Evaluation and simulation of an air-breathing PEMFC stack," Deryn Chu, Rongzhong Jiang, J. Power Sources, Vol.83, pp.128-133,1999.
2. "Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes," Young-Gab Chun, Chang-Soo Kim, Dong-Hyun Peck, Dong-Ryul Shin, J. Power Sources, Vol.71,pp.174-178,1998.
3. "Influence of flow field design on the performance of a direct methanol fuel cell," V.Baglio, E. Modica, V. Antonucci, J. Power Sources, Vol.91,pp. 202-209,2000.
4. "Stack design and performance of polymer electrolyte membrane fuel cells ,"Rongzhong Jiang, Deryn Chu, J. Power Sources, Vol. 93, pp. 25-31,2001.
5. "Efficiency and economics of proton exchange membrane (PEM) fuel cells," F.Barbir, and T. Gomez, Energy Partners,1996.
6. "Effect of collector plate resistance on fuel cell stack," F.Barbir, J.Braun, and J.Neutzler, Energy Partner, 1999.
7. "New materials for polymer electrolyte membrane fuel cell current collectors," Philip L. Hentall, J. Barry Lakeman, Gary O. Mesped, Paul L. Adcock, Jon M. Moor, J. Power Sources, Vol. 80, pp.235-241, 1999.
8. "Comparative studies of polymer electrolyte membrane fuel cell stack and singal cell," Deryn Chu, Rongzhong Jiang, J. Power Sources, Vol. 80, pp.226-234, 1999.
9. "Development of small polymer electrolyte fuel cell stacks," V. A. Paganin, E. A. Ticianelli, E. R. Gonzalez, J. Power Sources, Vol. 70, pp.55-58, 1998.
10. "Measurements of proton conductivity in the active layer of PEM fuel cell gas diffusion electrodes," C. Boyer, S. Gamburzev, O. Velev, S. Srinivasan, and A. J. Appleby, Electrochimica Acta., Vol. 43, No. 24, pp. 3703-3709, 1998.
11. "A study of the internal humidification of an integrated PEMFC stack," K.H.Choi, D.J. Park, Y.W. Rho, Y.T. Kho, T.H. Lee, Journal of Power Sources, Vol. 74, No. 1, pp. 146-150, 1998.
12. "Mathematical Modeling of Proton-Exchange-Membrane Fuel Cell Stacks ," D. Thirumalai and R. White, J. Electrochem. Soc., Vol. 144, No. 5, May 1997.
13. "Low-cost Light Weight High Power Density PEM Fuel Cell Stack," O. J. Murphy, A. Cisar, and E. Clarke, Electrochimica Acta., Vol. 43, No. 24, pp. 3829-3840, 1998.
14. "Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells," David L. Wood, III, Jung S. Yi, Trung V. Nguyen, Electrochimica Acta., Vol. 43, No. 24, pp. 3795-3809, 1998.
15. Fuel Cell Systems, Ed. by Leo J. M. J. Blomen and M. N. Mugerwa, Plenum Press, New York, 1994.
16.質子交換膜型燃料電池的製造技術,鄭煜騰,鄭耀宗,能源季刊第二十七卷,第118頁,86年4月。
17.質子交換膜燃料電池技術的進展分析,鄭耀宗,萬瑞霙,能源季刊第二十八卷,第二期,第119頁,87年 4月。
18.質子交換膜燃料電池的水管理技術,林建良,能源季刊第二十八卷,第三期,第106頁,87年7月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top