# 臺灣博碩士論文加值系統

(44.201.72.250) 您好！臺灣時間：2023/10/02 23:55

:::

### 詳目顯示

:

• 被引用:5
• 點閱:298
• 評分:
• 下載:48
• 書目收藏:0
 本論文目的為應用滾筒式拋光系統(cylindrical polishing system)於薄板工件(例如晶圓)的拋光，使其得到無破壞層、高光滑度與高平整度的工件表面。文中建立了滾筒式拋光法於軸對稱形狀誤差補償之數學模式，以直接解聯立方程式法與最小平方誤差法探討刀具停留時間分佈與加工深度分佈，並利用模擬分析與實驗方法探討滾筒刀具對平板工件加工所產生的加工率分佈之效應對加工精度與刀具停留時間的影響，其效應包括加工長度效應、邊界效應與傾斜效應；也在不失加工精度的前提下，提出將刀具停留時間分佈均勻化的方法，以利於分層加工策略的應用。在了解這些幾何效應之影響後，即可根據表面形狀誤差規劃出一套合適的刀具停留時間，對工件進行平坦化之加工。另外也探討了非等向性拋光(an-isotropic polishing)之加工機率與表面粗度的關係。 內容可分為三個部份，一是滾筒式拋光系統對軸對稱形狀誤差補償之數學模式的建立，且根據數學模式定義了非等向性拋光之拋光角度與拋光機率；第二部份是利用電腦模擬的方式進行形狀誤差補償之時間規劃與分析；第三部份則是以實驗來探討滾筒式拋光之加工策略的適用性與加工時所產生之效應，與模擬之效應相互比較；並實際對一任意軸對稱形狀誤差之工件進行平坦化。
 This thesis is aimed to apply cylindrical polishing system to a large flat workpiece (ex:wafer) to obtain high degree of planarization, low surface roughness and no crack layer. First, a mathematical model is presented which describes the axially symmetric form error compensation by cylindrical polishing process. The dwelling time-distribution of tool and the machining depth distribution are solved using the methods of simultaneous equations and least square error with non-negativity constraints. Then, using the simulation analysis and experimental method to examine the machining rate distribution effects on machining precision and the dwelling time-distribution of the tool when the workpiece is machining by cylindrical tool. The examined effects will include machining length effect, boundary effect and inclined effect. Under the range of the machining precision required, the approach to smooth the dwelling time-distribution of tool that will benefit layer-by-layer removing strategy. After these analyses, an adequacy dwelling time-distribution of the tool can be designed according to the workpiece form error. In addition, the relative between the machining probability due to the an-isotropic polishing property and surface roughness will be discussed. The contents of this thesis include three parts. First, a mathematical model is presented which describes the axially symmetric form error compensation by cylindrical polishing process. And, the polishing angles and polishing probability of the an-isotropic polishing property will be identified according to the mathematical model. Second, the design of dwelling time-distribution of tool and the analysis of the geometric effects will be discussed by computer simulation. Third, the experimental results will show the suitable of the machining strategy and compare the machining effects with the simulated results. And, the planarization of the workpiece that has axially symmetric form error will be done.
 目錄 謝誌………………………………………………………………………I Abstract.………………………………………………………………II 論文摘要……………………………………………………………….IV 目錄……………………………………………………………………..V 圖索引…………………………………………………………………VII 表索引………………………………………………………………….XI 第一章 緒論 …………………………………………………………..1 1.1 前言 …………………………………………………………..1 1.2 現有平坦化之方法簡介 ……………………………………..2 1.3 研究動機與目的 ……………………………………………..4 1.4 滾筒式拋光法 ………………………………………………..5 1.5 內容介紹 ……………………………………………………..7 第二章 滾筒式拋光系統之軸對稱形狀誤差補償原理 ……………..9 2.1 滾筒式拋光法加工原理 ……………………………………..9 2.2 軸對稱形狀誤差補償之數學模式 …………………………10 2.3 非等向性拋光之特質 ………………………………………13 2.4 結論 …………………………………………………………15 第三章 滾筒式拋光法加工策略之模擬分析 ………………………17 3.1 刀具停留時間直接解法 ……………………………………17 3.2 非負值最小平方誤差法 ……………………………………20 3.3 幾何特性之效應分析 ………………………………………22 3.3.1 形狀誤差幾何特性 ……………………………………22 3.3.2 加工率幾何特性 ………………………………………24 3.4 最小刀具停留時間之分析 …………………………………29 3.5 非等向性拋光之加工機率分析 ……………………………32 3.6 結論 …………………………………………………………33 第四章 加工特性之實驗分析 ………………………………………35 4.1 實驗規劃 ……………………………………………………35 4.2 實驗設備 ……………………………………………………42 4.2.1 實驗系統簡介 ……………………………………….42 4.2.2 實驗設備及量測儀器 …………………………….…44 4.3 實驗結果 ……………………………………………………45 4.4 結論 …………………………………………………………51 第五章 整合討論 ……………………………………………………53 5.1 超精密加工適用性之探討 …………………………………53 5.2 加工長度效應之探討 ………………………………………54 5.3 邊界效應之探 ………………………………………………55 5.4 傾斜效應之探討 ……………………………………………55 5.5 非等向性拋光之探討 ………………………………………56 第六章 結論 …………………………………………………………58 參考文獻 ………………………………………………………………60
 參考文獻【1】林明獻,矽晶圓半導體材料技術,全華科技圖書股份有限公司.【2】C. D. Ollison. et al (1999) “A comparison of mechanical lapping versus chemical-assisted mechanical polishing and planarization of chemical vapor deposited(CVD) diamond,” Diamond and Related Materials, 8, 1083-1090.【3】Z. J. Pei , S. R. Billingsley, S. Miura (1999) “Grinding induced subsurface cracks in silicon wafer,” Int. J. Mach. Tools Manufact., 39, 1103-1106.【4】Z. J. Pei and Alan Strasbaugh (2001) “Fine grinding of silicon wafers,” Int. J. Mach. Tools Manufact., 41, 659-672.【5】Z. J. Pei (2002) “A study on surface grinding of 300 mm silicon wafers,” Int. J. Mach. Tools Manufact., 42, 385-393.【6】Z. J. Pei and Alan Strasbaugh (2002) “Fine grinding of silicon wafers: designed experiments,” Int. J. Mach. Tools Manufact., 42, 395-404.【7】Zhaowei Zhong (2002) “Surface finish of precision machined advanced materials,” Journal of Materials Processing Technology, 122, 173-178.【8】Thomas G. Bifano and Paul A. Bierden (1997) “Fixed-abrasive grinding of brittle hard-disk substrates,” Int. J. Mach. Tools Manufact., 37(7), 935-946.【9】Y. Tomita and H. Eda (1996) “A study of the ultra precision grinding process on a magnetic disk substrate-development of new bonding materials for fixed abrasives of grinding stone,” Wear, 195, 74-80.【10】J. E. Mayer Jr.(2), G. —P. Fang (1995) “Effect of grinding parameters on surface finish of ground ceramics,” Annals of the CIRP, 44(1), 279-282.【11】G. Warnecke, et al (1995) “Basics of process parameter selection in grinding of advanced ceramics,” Annals of the CIRP, 44(1), 283-286.【12】H. Ohmori, et al (1995) “Analysis of mirror surface generation of hard and brittle materials by ELID(Electronic In-Process Dressing) grinding with superfine grain metallic bond wheels,” Annals of the CIRP, 44(1), 287-290.【13】H. K.Tonshoff, et al (1998) “Superfinishing ceramics,” Manufacturing Engineering, 120(2), 52-60.【14】H. K.Tonshoff, et al (1990) “Abrasive machining of silicon,” Annals of the CIRP, 39(2), 621-635.【15】D. L. Simpson, R, T, Croswell, A. R. Reisman, D. Temple, and K. Williams (1999) “Planarization process and application I. Undoped Glasses,” Journal of the Electrochemical Society, 146(10), 3860-3871.【16】D. L. Simpson, R, T, Croswell, A. R. Reisman, D. Temple, and K. Williams (1999) “Planarization process and application II. Doped Glasses,” Journal of the Electrochemical Society, 146(10), 3872-3885.【17】D. L. Simpson, R, T, Croswell, A. R. Reisman, D. Temple, and K. Williams (2000) “Planarization process and application III. As-Deposited and Annealed Film properties,” Journal of the Electrochemical Society, 147(4), 1513-1524.【18】Donald S. DeBear, et al. (March 2000) “Spin-etch planarization for dual damascene interconnect structure,” Solid State Technology, 53-60.【19】Victor Comello, et al (1990) “Planarizing leading edge devices,” Semiconductor International, 13, 60-66.【20】S. L. Riedinger, et al (1992) “Chemimechanical polishing of cadmium telluride with bromine-methanol solution,” Materials Science and Engineering, B15, L9-L12.【21】S. Sivaram, et al. (May 1992) ”Planarizing interlevel dielectrics by chemical-mechanical polishing,” Solid State Technology,87-91.【22】William J. Patrick, et al. (1991) “Application of chemical mechanical polishing to the fabrication of VLSI circuit interconnections,” Journal of the Electrochemical Society, 138(6), 1778-1784.【23】J. Warnock (1991) ”A two-dimensional process model for chemimechanical polish planarization,” Journal of the Electrochemical society, 138(8), 2938-2402.【24】S. R. Runnels and L. M. Eyman (1994) ”Tribology analysis of chemical-mechanical polishing,” Journal of the Electrochemical Society, 141(6), 1698-1701.【25】S. R. Runnels (1994) ”Feature-scale fluid-based erosion modeling for chemical-mechanical polishing” Journal of the Electrochemical Society, 140(7), 1900-1904.【26】S. R. Runnels (1995) “Optimizing wafer polishing through phenomenological modeling,” Journal of the Electrochemical Society, 142(6), 2032-2036.【27】Chih-Hsiang Tao, et al. (2000) ”Modeling of chemical mechanical polishing process using a discretized geometry approach” Journal of the Electrochemical Society, 147(4), 1502-1512.【28】John Tichy, et al. (1999) ”Contact mechanics and lubrication hydrodynamics of chemical mechanical polishing,” Journal of the Electrochemical Society, 146(4), 1523-1528.【29】Rahul Jairath, et al. (July 1994) ”Chemical-mechanical polishing：process manufacturability,” Solid State Technology, 71-77.【30】Rahul Jairath, et al. (October 1996) ”Linear planarization for CMP,” Solid State Technology, 107-114.【31】Iqbal Ali, et al. (October 1994) ”Chemical-mechanical polishing of interlayer dielectric：A review,” Solid State Technology, 63-70.【32】Michael A. Fury (July 1995) ”Emerging developments in CMP for semiconductor planarization-Part 2,” Solid State Technology, 81-88.【33】Wei-Tsu Tseng, Yuan-Tsu Hsieh, Chi-Fa Lin (February 1997) ”CMP of fluorinated silicon dioxide：Is it necessary and feasible？,” Solid State Technology, 61-66.【34】Somnath Nag, Amitava Chatterjee (September 1997) “Shallow trench isolation for sub-0.25- m IC technologies,” Solid State Technology, 129-136.【35】Kapila Wijekoon, et al. (April 1998) “Tungsten CMP process developed,” Solid State Technology, 53-56.【36】Michael A. Fury (July 1999) “CMP processing with low-k dielectrics,” Solid State Technology, 87-96.【37】Tuyen Vo, Todd Buley, et al. (June 2000) “Improved planarization for STI with fixed abrasive technology,” Solid State Technology, 123-128.【38】Lin Yang (June 2000) “Modeling CMP for copper dual damascene interconnects,” Solid State Technology, 111-121.【39】Y. T. Su, C. C. Horng, S. Y. Wang and S. H. Jang (1996) “Ultra-precision machining by the hydrodynamic polishing process,” Int. J. Mach. Tools Manufact., 36(2), 275-291.【40】Y. T. Su, C. C. Horng, J. Y. Sheen and J. S. Hsiau (1996) “A process planning strategy for removing arbitrary profile by hydrodynamic polishing process,” Int. J. Mach. Tools Manufact., 36(11), 1227-1245.【41】Y. T. Su, J. Y. Sheen (1999) “A process planning strategy for removing arbitrary and axially symmetric profile by a polishing process,” Int. J. Mach. Tools Manufact., 39, 187-207.【42】Y. T. Su, S. Y. Wang and J. S. Hsiau (1995) “On machining rate of hydrodynamic polishing process,” Wear, 188, 77-87.【43】Y. T. Su, T. C. Hung and Y. Y. Chang (1998) “On machining rate of hydrodynamic polishing process under semi-contact lubrication condition,” Wear, 220, 22-33.【44】Y. T. Su, Y. C. Kao (1999) “An experimental study on machining rate distribution of hydrodynamic polishing process,” Wear, 224, 95-105.【45】孫志忠(1998),滾筒式拋光系統之設計與加工率特性之初步分析,國立中山大學碩士論文,高雄.【46】丁基賢(1998),應用液動壓拋光法於小波長形狀誤差補償之探討,國立中山大學碩士論文,高雄.【47】蔡瑞峰(2000),應用液動壓拋光法移除小波長誤差之研究,國立中山大學碩士論文,高雄.【48】陳建宏(1996),工件表面輪廓曲率效應對液動壓拋光法加工率之影響,國立中山大學碩士論文,高雄.【49】陳勇維(2001),應用液動壓拋光法於工件表面終極粗度之初步探討,國立中山大學碩士論文,高雄.【50】B. J. Hamrock (1994), Fundamentals of Fluid Film Lubrication, McGraw-Hill, New York, p.414.【51】Bharat Bhushan (1999) ,Principles and Applications of Tribology, Wiley-Interscience, p.207.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 應用液動壓拋光法於工件表面終極粗度之初步探討 2 應用液動壓拋光法移除小波長誤差之研究 3 滾筒式拋光系統之設計與加工率特性之初步分析 4 應用液動壓拋光法於小波長形狀誤差補償之探討 5 工件表面輪廓曲率效應對液動壓拋光法加工率之影響 6 環型刀具應用於液動壓拋光之初步研究 7 化學機械研磨終點檢測之專利創研機制之研究 8 新型球拋光工具應用於中型STAVAX模具鋼表面精加工之研究 9 環狀刀具拋光系統之設計與運用 10 環形刀具液動壓拋光法與均勻化拋光之研究 11 結構剛性對滾筒式拋光法加工率的影響

 1 大津高、曾晴賢、呂勝由、張萬福 （1989） 臺灣北部高山湖泊－鴛鴦湖湖沼生物學之調查。臺灣省立博物館年刊 32：17-33。 2 呂金誠 （1997） 極點分布序列終端樣區選擇之研究。國立中興大學實驗林研究彙刊 19(1)：125-144頁。 3 李國忠、許世宏、關秉宗 （2000） 塔塔加高山生態系長期生態研究－塔塔加台灣鐵杉林之林相結構與更新之探討(一)。國立臺灣大學農學院實驗林研究報告(第228號) 14(2)：61-69。 4 陳明義、呂金誠、林昭遠 （1987） 台灣高山白木林之形成及其演替趨勢之探討。中華林學季刊 22(4)：65-76。 5 劉棠瑞、蘇鴻傑 （1978） 大甲溪流域上游台灣二葉松天然林之群落組成及相關環境之研究。國立臺灣大學農學院實驗林研究報告。121：207-239。 6 劉業經、呂福原、歐辰雄、賴國祥 （1984） 臺灣高山箭竹草生地之植物演替與競爭機制。中華林學季刊 17(1)：1-32。 7 劉業經、歐辰雄、呂金誠 （1988） 臺灣中部地區闊葉樹林人為干擾後植群之演替。中華林學季刊 21(1)：11-28。 8 蘇鴻傑 （1980） 臺灣稀有及有滅絕危機森林植物之研究。國立臺灣大學農學院實驗林研究報告 125：165-205。 9 蘇鴻傑、林則桐 （1979） 木柵地區天然林植群矩陣群團分析及分布序列。國立臺灣大學農學院實驗林研究報告 124：187-210。

 1 連續複合電鍍磨盤式超精密拋光機之研發及矽晶圓拋光特性 2 不同工件表面波長對拋光法於表面粗度之改善極限的探討 3 高速主軸斜角滾珠軸承系統之電腦輔助設計 4 銀基氧化鋁複合電氣接點材料之研發 5 實驗方法探討質子交換膜燃料電池在不同設計條件及製作方式下對性能影響之研究 6 結合基因演算法與混合式模糊PID控制器之主動式振動控制 7 數值模擬覆晶晶粒尺寸封裝之熱疲勞問題 8 可拆卸式輪椅輔助驅動機構之設計 9 垂直式CVD反應器內薄膜成長之參數探討 10 可撓式基板型球腳格狀陣列構裝之熱疲勞壽命分析 11 利用有限元素法探討薄形細腳距錫球可靠度之影響因子 12 利用有限元素法模擬雷射模組受熱循環負載之研究 13 碳纖維/聚醚醚酮複材積層板之高溫疲勞探討 14 網路遠端影像監控分散式系統 15 惰性氣體中直流電氣銀接點電弧特性和損耗形成機制之研究

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室