跳到主要內容

臺灣博碩士論文加值系統

(44.197.230.180) 您好!臺灣時間:2022/08/20 09:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳偉仁
研究生(外文):Wei-Ren Chen
論文名稱:碳纖維/聚醚醚酮複材積層板之高溫疲勞探討
論文名稱(外文):Fatigue Behavior of AS-4/PEEK APC-2 Composite Laminates at Elevated Temperatures
指導教授:任明華任明華引用關係
指導教授(外文):Ming-Hwa R. Jen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:73
中文關鍵詞:高溫負載順序疲勞複材積層板碳纖維/聚醚醚酮破壞
外文關鍵詞:Loading SequenceFracture.FatigueComposites LaminatesElevated TemperatureAS-4/PEEK APC-2
相關次數:
  • 被引用被引用:1
  • 點閱點閱:338
  • 評分評分:
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本文旨在利用實驗方法探討碳纖維/聚醚醚酮複材積層板同時承
受溫度及負載順序兩種不同組合之疲勞壽命、強度、損傷及破壞過程。
實驗為主要之工作,試片為16層之類似均向性疊層積層板,分別於75℃及125℃的高溫環境下,依序完成靜態拉伸實驗、常振幅應力疲勞實驗、兩階段應力疲勞實驗、殘餘強度實驗及殘餘勁度實驗,藉由實驗所獲得的數據,並配合線性疲勞損傷累積理論(Miner’s Rule)來分析實驗數據,探討材料在溫度作用及負載順序效應下之疲勞特性及破壞機制。最後並輔以超音波C-Scan非破壞檢測,相互對照下我們更可了解積層板損傷之過程及其破壞機構。
由實驗之結果得知,125℃的溫度環境下試片的損傷較75℃的溫度環境下嚴重。此外試片承受負載的順序若為先低後高,則其累積損傷值 將小於1;若試片承受負載的順序若為先高後低,則其累積損傷值 將大於1。而對試片殘餘強度及殘餘勁度影響最大的組合情形為高溫低應力等級,其次為低溫低應力等級,再者為高溫高應力等級,最後則為低溫高應力等級。
ABSTRACT
This thesis is aimed to investigate the fatigue life, strength, damage and fracture process in AS-4/PEEK APC-2 composite laminates subjected to both elevated temperature and loading sequences.
Our main work is experiment. All specimens are 16-ply thick with lay-up of quasi-isotropic laminates. We accomplish static tensile test, fatigue test of constant stress amplitude, and two-step loading at elevated temperatures, i. e., 75℃and 125℃. The residual strength and stiffiness are obtained. We also use Miner’s rule to analyze the data acquired from experiment and to discuss the fatigue properties and fracture mechanism subjected to both elevated temperatures and loading sequences of combination. Finally, we perform ultrasonic C-Scan non-destructive test to examine laminates. In comparsion with experimental data, we can further understand the damage process and fracture mechanism in laminates.
The experimental results can be concluded as follows. The damage
of specimens at 125℃ is more serious than that at 75℃.Furthermore, if
the loading sequence is low-high, the cumulative damage value will be
smaller than 1,whilst it will be larger than 1 due to reverse loading
sequence. The sequence of decreasing residual strength and residual
stiffiness of specimen associated with the temperature and stress level in
combination is high temperature-low stress, low temperature-low
stress, high temperature-high stress and low temperature-high stress.
目 錄
目錄….………………………………………………………………….I
表目錄.……………………………………………………………….III
圖目錄…...…………………………………………………………….V
摘要………………………………………………………………...VIII
英文摘要……………………………………………………………IX
第一章 緒論………...…………………………………………………1
1.1前言………………………………………………….…………1
1.2複合材料簡介.…………………………………………………1
1.3研究動機與目的……………………………………………….3
1.4研究方法……………………………………………………….3
1.5文獻回顧……………………………………………………….5
1.6組織與章節.……………………………………………………7
第二章 疲勞損傷累積理論模式……………………………………....9
2.1疲勞損傷機制…………………..…………………...………...…9
2.2疲勞損傷累積模式………..…………………………….……...
10第三章 實驗設備與規劃…………………………………………….12
3.1實驗材料簡介………………………………………………...12
3.2實驗設備.……………………………………………………..12
3.3試片製作與分組………………………..…………………….14
3.4實驗過程與步驟……………………………………………..16
3.4.1靜態拉伸實驗……………….………………………...16
3.4.2疲勞實驗………….…………………………………...16
3.4.3殘餘強度實驗………………….……………………...17
3.4.4殘餘勁度實驗……………………………….….….…17
3.4.5超音波C-Scan非破壞檢測…………………………….18
第四章 實驗結果…………………………………….………………27
4.1原始試片之靜態拉伸及疲勞性質……………………………..27
4.1.1靜態拉伸強度測試……………………….……………...27
4.1.2常振幅應力疲勞實驗……………………………….…28
4.2兩階段應力疲勞實驗…………………………………………..29
4.3殘餘強度實驗…………………………………………….…….31
4.4殘餘勁度實驗…………………………………………….…….32
4.5超音波(C-Scan)非破壞檢測……………….…………………...32
第五章 分析與討論………………………………………………….60
5.1溫度效應之影響………………………………...………...60
5.2負載順序效應之影響……………………………………...62
5.3 破壞模式之探討……………………………………...…...64
第六章 結論與建議………………………………………………….65
6.1結論…………………………………………………………...65
6.2建議…………………………………………………………...66
6.3未來發展……………………………………………………...67
參考文獻………………………………………………………………..68
附錄…………………………………………………………………...72
表 目 錄
表1-1複合材料單向疊層之主要材料性質…..…………………….. 8
表4-1 AS-4/PEEK 積層板之靜態強度數據…………………………..35
表4-2 類似均向疊於75℃常振幅應力下之疲勞壽命結果…………..36
表4-3 類似均向疊試片於125℃常振幅應力下之疲勞壽命結果……36
表4-4 類似均向疊試片於兩階段應力下之疲勞壽命結果[先80% UTS
(125℃) ,後65% UTS (75℃)] …………………………….…. 37
表4-5 類似均向疊試片於兩階段應力下之疲勞壽命結果[先80% UTS (75℃)
,後65% UTS (125℃)] …………………………….…..37
表4-6 類似均向疊試片於兩階段應力下之疲勞壽命結果[先65% UTS (125℃)
,後80% UTS (75℃)] …………………………….….38
表4-7 類似均向疊試片於兩階段應力下之疲勞壽命結果[先65% UTS (75℃)
,後80% UTS (125℃)]………………………………..38
表4-8 類似均向疊試片承受80% UTS (125℃)於指定振次後之殘留強度值………..…………………..…………………………..……39
表4-9 類似均向疊試片承受80% UTS (75℃)於指定振次後之殘留強
度值……………………………………………………………..39
表4-10 類似均向疊試片承受65% UTS (125℃)於指定振次後之殘留
強度值…………………………………………………………..40
表4-11 類似均向疊試片承受65% UTS (75℃)於指定振次後之殘留強度值……………………………………………………………..40
表4-12 類似均向疊試片承受80% UTS (125℃)於指定振次後之殘留勁度值……………………………………………………..……41
表4-13 類似均向疊試片承受80% UTS (75℃)於指定振次後之殘留勁度值…………………………………….……………………….41
表4-14 類似均向疊試片承受65% UTS (125℃)於指定振次後之殘留勁度值…………………………………………………………..42
表4-15 類似均向疊試片承受65% UTS (75℃)於指定振次後之殘留勁度值…………………………………………………………......42
附錄表I 中央鑽孔十字疊序積層板之靜態強度數據………………72
附錄表II中央鑽孔十字疊於75℃常振幅應力下之疲勞壽命結…….73
附錄表III中央鑽孔十字疊於125℃常振幅應力下之疲勞壽命結果..73
圖 目 錄
圖3-1 熱壓成型機…………………………………………………….19
圖3-2水冷式鑽石切割機……………………………………………19
圖3-3 MTS-810材料試驗機…………………………………………20
圖3-4 MTS 458控制平台及電腦輸出設備…………………………20
圖3-5 MTS-651環境溫度控制爐…………………………………21
圖3-6 超音波C-SCAN非破壞檢測儀……………………………..21
圖3-7類似均向疊 積層板各層預浸布分解圖…22
圖3-8積層板成形之溫度、壓力對時間之關係圖………………..22
圖3-9高溫壓製成形後之積層板……………………………………23
圖3-10積層板之尺寸(單位mm) ……………………………………23
圖3-11複合材料試片圖……………………………………………..24
圖3-12複合材料試片之尺寸……………………………….……….24
圖3-13 高溫兩階段應力疲勞實驗之施行順序示意圖……………25
圖3-14 試片於水槽中進行超音波C-Scan 掃描之佈置圖………….26
圖4-1 類似均向疊試片之靜態拉伸強度與溫度之關係圖…………..43
圖4-2 類似均向疊試片彈性模數與溫度之關係圖…………………..43
圖4-3 類似均向疊試片於75℃及125℃下其應力與應變之關係圖...44
圖4-4 類似均向疊試片於高溫下之施加應力與疲勞壽命關係圖…..44
圖4-5 類似均向疊試片於四種溫度與應力組合下之Miner’s sum 分佈
圖………………………………………………………………..45
圖4-6 類似均向疊試片於80% UTS(125℃)下之殘留強度-無因次化
疲勞振次圖……………………………………………………..45
圖4-7 類似均向疊試片於80%UTS(75℃)下之殘留強度-無因次化疲
勞振次圖………………………………………………………..46
圖4-8 類似均向疊試片於65% UTS (125℃)下之殘留強度-無因次化
疲勞振次圖……………………………………………………..46
圖4-9 類似均向疊試片於65%UTS(75℃)下之殘留強度-無因次化疲
勞振次圖………………………………………………………..47
圖4-10 類似均向疊試片於四種溫度與應力組合下之殘留強度-無因
次化疲勞振次圖………………………………………………47
圖4-11 類似均向疊試片於80%UTS(125℃)下之殘留勁度-無因次化
疲勞振次圖…………………………………………………….48
圖4-12 類似均向疊試片於80%UTS(75℃)下之殘留勁度-無因次化
疲勞振次圖…………………………………………………….48
圖4-13 類似均向疊試片於65%UTS(125℃)下之殘留勁度-無因次化
疲勞振次圖…………………………………………………….49
圖4-14 類似均向疊試片於65%UTS(75℃)下之殘留勁度-無因次化
疲勞振次圖…………………………………………………….49
圖4-15 類似均向疊試片於四種溫度與應力組合下之殘留勁度-無因
次化疲勞振次圖………………………………………………..50
圖4-16 類似均向疊試片於四種溫度與應力組合下之強度損傷-無因
次化疲勞振次圖………………………………………………..50
圖4-17 類似均向疊試片於四種溫度與應力組合下之勁度損傷-無因
次化疲勞振次圖……………………………………………….51
圖4-18 類似均向疊試片於125℃-80%UTS情形下之C-Scan非破壞
檢測圖…………………………………………………………..52
圖4-19 類似均向疊試片於75℃-80%UTS情形下之C-Scan非破壞
檢測圖………………………………………………………….53
圖4-20 類似均向疊試片於125℃-65%UTS情形下之C-Scan非破
壞檢測圖……………………………………………………….54
圖4-21 類似均向疊試片於75℃-65%UTS情形下之C-Scan非破壞
檢測圖………………………………………………………….55
圖4-22 類似均向疊試片於125℃-65%UTS情形下,接受指定疲勞
振次後之試片圖………………………………………………..56
圖4-23類似均向疊試片於75℃-65%UTS情形下,接受指定疲勞振
次後之試片圖…………………………………………….…..56
圖4-24類似均向疊試片於125℃-80%UTS情形下,接受指定疲勞振
次後之試片圖…………………………………………….…..57
圖4-25 類似均向疊試片於75℃-80%UTS情形下,接受指定疲勞振
次後之試片斷面圖……………………………………………..57
圖4-26類似均向疊試片於125℃-65%UTS情形下,接受指定疲勞振
次後之試片斷面圖……………………………………………..58
圖4-27類似均向疊試片於75℃-65%UTS情形下,接受指定疲勞振
次後之試片斷面圖……………………………………………..58
圖4-28類似均向疊試片其裂縫及脫層的發展情形圖………………..59
參 考 文 獻[1]馬振基, “高分子複合材料”, 正中書局, 1995.[2]鍾嘉珽, “聚二醚酮樹脂及其碳纖維複合材料的加工、型態與性質間關係之探討,” 中山大學材料科學研究所博士論文, 1995.[3]Carlile, D. R., Leach, D. C., Moore, D. R., and Zahlan, N., “Mechanical Properties of the Carbon Fiber/PEEK Composite APC-2/AS-4 for Structural Applications”, ASTM STP 1044, 1989, p. 199.[4]Maekawa Z., Homada H., Lee K. and Kitagawa T., “Reliability Evaluation of Mechanical Properties of AS4/PEEK Composites”, COMPOSITES, Vol 25, 1994, p. 37.[5]Clegg, D. W. A. A. Collyer, Mechanical Properties of Reinforced Thermoplastics, Elsevier Applied Science Publishers, 1986.[6]李傳華, 1998, “複合材料積層板疲勞強度與壽命預測及層間應力分析”, 國立中山大學機械所博士論文.[7]Tai, N. H., C. M. Ma, and S. H. Wu, “Fatigue Behavior of Carbon Fiber/PEEK Laminate”, COMPOSITES, Vol. 26, 1995, p. 551. [8]Gardin, Henaff and M. C. Lafarie-Frenot, “Fatigue Behavior of Thermoset and Thermoplastic Cross-Ply laminates ”, COMPOSITES, Vol. 23, 1992, p. 109.[9]戴念華, 葉銘泉, 曾志明, “碳纖維強化聚醚醚酮(Carbon/PEEK)積層板承受熱循環與低能量衝擊後之疲勞行為研究,” 中國機械工程學會第十五屆全國學術研討會論文集台南市, 1998, PP. 487-493.[10]葉銘泉, 李威震, “熱循環負載及預扭對CFPR複合材料疲勞行為影響之研究”, 中國機械工程學會第十四屆全國學術研討會論文集中壢市, 1997, PP. 531-538.[11]彭聖森, “碳纖維/聚二醚酮複合材料積層板溫度效應對疲勞破壞行為之影響,” 中山機械工程研究所碩士論文, 1999.[12]張熙超, “碳纖維/聚二醚酮複合材料積層板鑽孔及溫度效應之破壞機制與機械性質分析,” 中山機械工程研究所碩士論文, 1999.[13] 曾育鍾, “中央鑽孔碳纖維/聚二醚酮複材積層板之高溫疲勞探討”, 中山機械工程研究所碩士論文, 2000.[14]Gabb, T. P., Gayda, J., and MacKay, R. A., “Isothermal and Nonisotherma Fatigue Behavior of a Metal Matrix Composite.” Journal of Composite Materials, Vol. 24, June 1990.[15]Ramey, J.and Palazotto A., “A Study of Graphite/PEEK under High Temperature”, ASTM STP 1044, 1989, p. 91. [16]Eheng, D. and Ghonem, H., “High Temperature/High Frequency Fatigue Crack Gronth in Titanium Metal Matrix Composites,”ASTM STP1253, 1996, p. 137.[17]Bahei-EI-Din, Y. A., “Modeling of Thermomechanical Fatigue in Sigma/TIMETAL 21S Laminates,” ASTM STP1253, 1996, p. 328.[18]Tong, M. G., “Simulation of Fatigue Behavior of High Temperature Metal Matrix Composites,” ASTM STP 1253, 1996, p. 540.[19]Bizon, P. T. and Spera, D. A., “Thermal-Stress Fatigue Behavior of Twenty-Six Superalloys,” Thermal Fatigue of Materials and Components, ASTM STP 612, 1976, pp. 106-122.[20]Sorensen, B. F., “Thermomechanical Fatigue of Ceramic Matrix Composites: Analysis of Mechanisms at a Microscale” The Winter Annual Meeting of ASME, Atlanta, GA, 1991. p. 7.[21]Castelli, M. G., Bartolotta. P. A., and Ellis. J. R.,“Thermomechanical Fatigue Testing of High Temperature Composites: Thermomechanical Fatigue Behavior of SIC(SCS-6)/Ti-15-3.”Composite Materials: Testing and Design (Tenth volume), ASTM STP 1120. G. C. Grimes. Ed., American Society for Testing and Materials, Philadelphia, 1991.[22] Newag, G. M. A. Lustiger, and J-Y. Yung, “Delamination Growth under Cyclic Loading at Elevated Temperature in Thermoplastic Composites”, ASTM STP 1044, 1989, p. 264.[23]Thomas, G. B., “The Case for Standard in High Temperature Fatigue,” High Temperature Fatigue: Properties and Prediction, 1987, pp. 261-299.[24]Rotem, Assa and Nelson, H. G. “Fatigue Behavior of Graphite-Epoxy Laminates at Elevated Temperatures,” Fatigue of Fibrous Composite Materials, ASTM STP 723, 1981, pp. 152-173. [25]Yang, J. N. and Jones, D. L., “Load Sequence Effectson The Fatigue of Unnotched Composites Materials,” Fatigue of Fibrous Composite Materials, ASTM STP 723, 1981, pp. 213-232.[26]Jeng, S. M., “Fatigue Damage Evolution and Degradation of Mechanical Properties in Silicon-Carbide (SiC) Fiber-Reinforced Titanium Matrix Composites,” ASTM STP1253, 1996, p. 377.[27]Castelli, M. G., “Characterization of Damage Progression in SCS-6/TIMETAL 21S under Thermomechanical Fatigue Loading, ”ASTM STP1253, 1996, p. 412.[28]Broutman, L. J. and Sahu, S., “A New Theory to Predict Cumulative Fatigue Damage in Fiberglass Reinforce Plastics,” Composite Materials: Testing and Design, ASTM STP 497, 1972, pp. 170-188.[29] Summerscales John, “Non-Destructive Testing of Fiber-Reinforced Plastics Composites,” Volume 2, Elsevier Applues Science, 1987.[30]黃茂坤, “工業用超音波檢測實務彙編,” 中船公司高雄總廠訓練中心編印, 1996.[31] 吳學文、黃啟貞、陳必貫及葉競榮合編, “超音波檢測法初級,” 中華民國非破壞檢測協會,民80.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊