|
[1] F. Rosenblatt, “The perceptron: A Probabilistic model for information storage and organization in the brain,” Psychological Review, vol. 65, pp. 386-408, 1958.[2] M. T. Hagan, H. B. Demuth and M. Beale, Neural network design, PWS, Boston, 1996.[3] G. P. Zhang, “Neural Networks for Classification: A Survey,” IEEE Trans. Syst., Man and Cybern., Part C: Applications And Reviews, vol. 30, no. 4, pp. 451-462, 2000.[4] T. J. Downey, D. J. Meyer, R. K. Price and E. L. Spitznagel, “Using the receiver operating characteristic to asses the performance of neural classifiers,” Int. Joint Conf. Neural Networks, vol. 5, pp. 3642-3646, 1999.[5] S. Dougherty, K. W. Bowyer and C. Kranenburg, “ROC curve evaluation of edge detector performance,” in Proc. Int. Conf. Image Processing, vol. 2, pp. 525 —529, 1998.[6] J. M. DeLeo and S. J. Rosenfeld, “Essential roles for receiver operating characteristic(ROC)methodology in classifier neural network applications,” in Proc. Int. Joint Conf. Neural Networks, vol.4, pp. 2730-2731, 2001.[7] K. Woods and K. W. Bowyer, “Generating ROC curves for artificial neural networks,” IEEE Trans. Medical Imaging, vol. 16, no. 3, pp. 329-337, June 1997.[8] J. C. Principe, N. R. Euliano and W. C. Lefebvre, Neural and Adaptive Systems: Fundamentals through Simulation, John Wiley, New York, 2000. [9] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, New Jersey, 1999.[10] D. O. Loftsgaarden and C. P. Quesenberry, “A nonparametric estimate of a multivariate density function,” Ann. Math. Stat., vol. 36, pp. 1049-1051, June 1965.[11] G. Parthasarahy and B. N. Chatterji, “A class of new KNN methods for low sample problems,” IEEE Trans. Syst., Man and Cybern., vol. 20, no. 3, pp. 715-718, May/June 1990.[12] D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley and B. W. Suter, “The multilayer perceptron as an approximation to a Bayes optimal discriminant function,” IEEE Trans. Neural Networks, vol. 1, no. 4, pp. 296 —298, Dec. 1990.[13] UCI Repository of machine learning databases, http://www.ics.uci.edu/~mlearn/MLRepository.html
|