跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/16 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李旭富
研究生(外文):Hsu-Fu Lee
論文名稱:應用暫態液晶影像法分析超高密度晶片模組陣列對熱傳之影響
論文名稱(外文):Experiment study for heat transfer of high density electronic multichip array by transient heat transfer method with with thermochromic liquid crystal
指導教授:楊儒楊儒引用關係
指導教授(外文):Yang,Ru
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:87
中文關鍵詞:熱傳影響晶片模組暫態液晶影像法超高密度陣列
外文關鍵詞:heat transfer effectsmulitchip modulestransient methodhigh density multichip arraythermochromic liquid crystal
相關次數:
  • 被引用被引用:3
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本研究針對多晶片模組(MultiChip Modules,MCM)的排列結構方式以交錯(Staggered)與線性(In-Line)的排列結構,以及不同的超高密度間距,在變動雷諾數(Re)於實驗中對相關參數的影響及變化吾人以「暫態液晶影像法」,研究改變晶片模組陣列以變化3 × 5線性、交錯
之晶片模組陣列,分別探討超高密度間距比為S/L=8 時為8mm、12m、16mm,對熱傳效果之影響,量測各列中心部位的晶片熱傳係數,標準高度比為H/L=10/20,其高度20mm,觀察相關參數變化的關係,藉由實驗Re=1394~5025 之結果分析晶片模組中,容易發生熱破壞的區域,設法改善散熱問題。實驗結果顯示:
(1) 隨著雷諾數升高有較佳的熱傳效果,雷諾數降低時使邊界層厚度增加熱傳效果降低。當雷諾數Re=1394~3210 時,熱傳增強的現象發生於第二塊,而雷諾數Re = 4135~5025 時無論間距及排列變化情形,於第三塊產生熱傳增強的現象,係因主流場分流情形,隨著雷諾數的增加流體再附著現象亦隨之向後延伸。
(2) 在超高密度晶片模組中12S (S/L=6/20 )為兼顧超高密度及熱傳效果的最適當的配置。在12S時雷諾數Re應於4135以上,因為在低雷諾數時流場受干擾,到後段區塊工作流體能帶走的熱量有限。在8S時(S/L= 4/20)的晶片模組在較低雷諾數的情況下,無法有效的與主流場流體做熱交換達到冷卻,僅少量的熱被流體帶走,形成熱堆積於晶片中心部位。
(3) 交錯排列的晶片模組陣列中,皆於第二列的晶片模型前緣兩側角落處,有良好的熱傳現象,效果僅次於第一列。其因主流場產生繞流(Bypass flow)而生成角渦流(Corner Vortex)。當雷諾數Re = 4135~5025 時,交錯陣列的熱傳效果優於線性陣列,雷諾數
Re =1394~3210 時,則反之。故雷諾數仍為超高密度晶片模組熱傳效果決定的關鍵。
Abstract
This investigate is designated to the viewpoint that arrangement array of multichip modules are both staggered and in-line. Moreover, here we will discuss and compare the effects and differences of the relevantparameters caused
by change Reynolds number (Re) in the experiment.In this experiment, I adopt “transient heat transfer method with thermochromic liquid crystal” to research multichip modules array change to 3 × 5 and in-line or staggered multichip modules array to probe into the effects of over high density electronic multichip array space to length ratio to heat transfer effects when over high density electronic multichip array space to length ratio are S/L= 4/20,6/20,8/20 in the 8mm、12m、16mm respectively. The conditions are as following when every row center of chip convection heat transfer coefficient are measured:
standard height to length ratio is H/L=10/20
and the height is 20mm. By observing the relationship of the varying parameters, as we can see in the analyze multichip of the experiment Re range form 1394 to 5025, we are
able to improve thermal management.
The experimentresule:
(1) At higher values of Re the heat transfer effects are gain more,atteribute main flow field separation and reattachment is form behind the
downstream modules.
(2) In over high density multichip array 12S (S/L=6/20) proper are use for Re higher 4135 more than, at 8S (S/L=4/20)the lower Re can be thermocumulate in chip center.
(3)When Re is 4135~5025,the heat transfer effects from staggered array is superior to in-line array. If Re range is 1394~3210,the thermal
conduction is opposite. Therefore, Re is still the key that decides the efficacy of over high density electronic multichip array heat transfer
effects.
目錄-------------------------------------------Ⅰ
圖表目錄---------------------------------------Ⅲ
中文摘要---------------------------------------Ⅵ
英文摘要---------------------------------------Ⅶ
符號說明---------------------------------------Ⅷ
第一章研究背景與目的----------------------------1
第二章文獻回顧----------------------------------3
2-1突出元件對流場及熱傳影響相關文獻-------------3
2-2晶片模組陣列熱流現象之相關文獻---------------4
2-3液晶量測與影像分析技術應用之相關文獻---------4
2-4研究領域-------------------------------------8
第三章理論基礎---------------------------------12
3-1 相似理論-----------------------------------12
3-2 液晶分析理論-------------------------------15
第四章實驗設備與步驟---------------------------19
4-1實驗裝置------------------------------------19
4-2實驗前的參數控制與量測----------------------23
4-3實驗預備階段--------------------------------29
4-4實驗步驟------------------------------------30
第五章結果與討論-------------------------------36
5-1晶片模組陣列熱傳效果在變動雷諾數Re 下的變化情形----------------36
5-2晶片模組陣列熱傳效果在變動間距S下的變化情形----------------------37
5-3 晶片模組陣列熱傳效果在變動排列下的變化情形----------------------38
5-4 不準確度分析------------------------------------------------------------------82
第六章結論------------------------------------------------------------------------84
參考文獻--------------------------------------------------------------------------85
參考文獻【1】L.T.Yeh,"Review of heat transfer teachnologies in electronic equipment",J.of Electronic Packaging,Dec 1995.【2】A.Bar-Cohen,A.D.Kraus and .F.Davidson,"Thermal frontiers in the design and packagin of micro electronic equipment",J.Mechanical Engineering,June 1983.【3】G.P.Xu, and C.P.Tso,"A review on direct liquid cooling channel flow with single-phase for electronic systems",J. Electron.Manufact.,vol.6,pp.115-125,1996.【4】http:// www.intel.com,"Intel Pentium4 Processor in the 478-pin Package at 1.6~2.4GHz datasheet ",April 2002【5】http:// www.amd.com,"AMD Athlon Processor Model 4 Date【6】P.T.Ireland, and T.V.Jonse,"The respon time of sureface thermometer employing encapsulated thermochromic liquid crystals"ASME,J.Turbomachinary,vol.114,pp.765-775,1992【7】R.J. Goldstein, S.Y. Yoo, and M.K. Chung,“Convective mass transfer form a square cylinder and its base plate”,Int. J. Heat Mass Transfer, 1990, Vol.33, No.1, pp.9-18.【8】B.H. Kang, and Y. Jaluria,“Mixed convection transport from a protruding heat source module on a vertical surface〞,AIAA,Journal of Thermophysics and Heat Transfer, 1990, Vol.4,【9】W.H. Schofield, and E. Logan,“Turbulent shear flow over surface mounted obstacle ”,ASME J. Fluids Engineering, 1990,112,pp.376-385.【10】葉兆雄,“外在裝置對大型積體電路流場之影響”,國立成功大學工程科學研究所, 1990【11】M.K. Chyu, and V. Natarajan,“Local heat mass transfer distributions on the surface of a wall-mounted cube”,ASME J.Heat Transfer,1991,Vol.113, pp.851-857.【12】C.W.Leung, and H.J.Kang,“Laminar convection of horizontal and vertical simulated printed-circuit board semblies”,ExperimentalHeat Transfer,1997,vol.10, No.1 ,pp.39-49.【13】E.R.Meinders,T.H.Van Der Meer, andK.Hanjalic,“Local convective heat transfer form an array of well-mounted cubes,Int. J. Heat Transfer, 1998, Vol.41, No.2, pp.335-346.【14】E.M. Sparrow, J.E. Niethammer, and A.Chaboki,“Heat transfer and pressure drop characteristics of rectangular modulesencountered in electronic equipment”, ASME, Journal of Heat Transfer, 1982, Vol.25, pp.961-973.【15】N.Ashiwake,w.Nakayama,and T.Daikoku,“Forced convective heat transfer form LSI packages in an air-cooled wiring card array”,Heat transfer in electronic equipment,ASME,HTD-Vol.28, 1983,pp.35- 42,【16】E.M. Sparrow, A.A. Yanezmoreno, and D.R. Otis, Jr,“Convection heat transfer response to height differences in an array of block-like electronic components”,Int. J. Heat Mass Transfer,1984, Vol.27, No.3, pp.469-473.【17】陳文立,卲揮洲,“二為渠道中具有發熱元件陣列時之層流強迫對流熱傳之研究”,中華民國第十三屆全國力學會議,1989,pp.1219-1230【18】S.V.Garimella, and P.A.Eibeck,“Haet transfer characteristics of an array ofprotruding elements in single phase forced convection”,Int. J. Heat Mass Transfer, 1990, Vol.33, No.12, pp.2659-2669【19】C.H. Amon,“Heat transfer enhancement by flow destabilization in electronic chip configurations”, ASME, Journal of ElectronicPackaging, 1994, Vol.116, pp.198-205.【20】M.Molki,M.Faghri, and O.Ozbay,“A new correlation for pressure drop in arrays of rectangular blocks in air-cooled electronicunit”,Transactions of the ASME,1994,Vol.116,pp.856-861【21】Y.P. Gan, Q.J. Deng, C.F. Ma, X.Y. Yuan, and D.Y. Cai,“Forced convection air cooling from electronic component arrays in a parallel plate channel”, IEEE Transactions On Components,Packaging, and ManufacturingTechnology,1996, Part A, Vol.19,No.2, pp.163-167.【22】B.A. Jubran, S.A. Swiety, and M.A. Hamdan,“Convective heat transfer and pressure drop characteristics of various arrayconfigurations to simulate the cooling of electronic modules”,Int. J. Heat Mass Transfer, 1996, Vol.39, No.16 pp.3519-3529.【23】趙隆山,王世敏,薛千山,“電子元件之三維散熱模式分析”,中華機械工程學會第十三屆全國學術研會,1996,pp.159-167【24】N.Akino,T.Kunugi,K.Lchimiya,K.Mistsushiro, and M.Ueda,“Improved liquid-crystal thermometry excluding human color sensation”, Transactions of the ASME,1989,Vol.111,pp.558-565【25】Srinath V. Ekkad, and Je-Chin Han,“Heat transfer inside and downstream of cavities using transient liquid crystal method ”,Journal of thermophysics and heat transfer,1996,Vol.10,No.3,pp.511-516【26】謝瑞青,顏維謀,柳輝忠,“以液晶影像技術量測基版上之突出物群周圍之熱傳分佈”,第十六屆機械工程研討會,1999,pp256-264【27】王盈智,“暫態液晶量測技術用在電子晶片表面上局部熱傳之實驗研究”,國立中山大學機械工程研究所,2001【28】Frank Kreith, and Mark S. Bohn,“Principles of heat transfer",Fifth edition, pp.262-263, and pp.475.【29】R.J. Moffat,“Experimental heat transfer”, Keynote paper, Kn11,proc. 9 th Int. Heat Transfer Conf., Jerusalem, 1990, Vol.1,pp.882-890.【30】A. Valencia, M. Fiebig, and N. K. Mitra,“Influence of heat conduction on deter-mination by liquid crystal thermography”,Experimental Heat Transfer, 1995, pp.271-279.【31】R.L. Mott 著, 葉偉成譯,“Applied Fluid Mechanics”,“實用流體力學”,科技圖書股份有限公司,81 年1 月.【32】Z.Wang, P.R.Ireland,T.V.Jones, and R. Davenport,“A color image processing system for transient liquid crystal heat transferexperiments”Journal of Turbomachinery,1996,Vol.118,pp.421-427【33】R.J. Moffat,“Experimental heat transfer”, Keynote paper, Kn11,proc. 9 th Int. Heat Transfer Conf., Jerusalem, 1990, Vol.1,pp.882-890.【34】R. J. Moffat,“Described the uncertainties in experimental results”,Experimental Thermal and Fluid Science, 1988, Vo l.1, pp.3-17【35】Rainer Hocker,“Optimization of transient heat transfer measure-ments using thermochromic liquid crystals based on an error estimation”Paper96-GT-235 presented at the ASME TURBOEXPO ’96, Birmingham,UK,June 10-13 1996
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top