跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/14 14:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁大鈞
研究生(外文):Da-Jiun Weng
論文名稱:半導體構裝體在不同溫濕保存環境下經IR-refloew過程後界面黏著力變化現象之研究
論文名稱(外文):The Study of the Moisture Effect on the Interfacial adhesion of IC Packages in the IR-Reflow Process
指導教授:錢志回
指導教授(外文):Chi-Hui Chien
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:91
中文關鍵詞:半導體構裝體黏著
外文關鍵詞:IC PackageAdhesion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

中文摘要:
本研究藉由模擬半導體構裝元件,探討在改變不同防焊漆厚度時,於不同溫濕保存環境下,經IR-reflow過程之後界面黏著力之變化現象。溫濕保存環境以半導體構裝元件實際上可能遭遇的狀況為選取的依據,經過熱力環境與濕度環境交互影響之後,發現防銲漆厚度的大小,的確會造成黏著強度的變化。
防銲漆厚度的大小會因升高溫度與濕度,導致材料軟化與水氣滲入造成界面黏著強度明顯下降,在本研究之環境歷程與實驗條件下,試片破壞面皆發生在防焊漆與基板(FR-4)之間,故所得強度為防焊漆與FR-4之黏著強度。


Abstract:
This study imitated the IC package with different solder mask thickness in different environment of the temperature and moisture to see if the adhesion strength changed after IR-Reflow process. The temperature and moisture of the environment were decided base on the possible conditions that the IC package might encounter in the real situation. After the temperature and moisture in the environment worked interactively and reciprocally, we found that the thickness of solder mask indeed cause the change of adhesion strength.
The thickness of solder mask affected by the raising of the temperature and moisture caused the apparent reduction of the interface adhesion strength due to the softening of the material and the penetrating of the moisture. Besides, the specimen fracture surface occurred between solder mask and FR-4 substrate under any experimental conditions and progress confirmed that the measured strength is the adhesion strength between solder mask and FR-4.


目錄
謝誌…….…………………………………………………………………I
目錄………………………………………………………………Ⅲ
圖目錄…………………………………………………………………Ⅶ
表目錄…………………………………………………………………..Ⅹ
中文摘要……………………………………………………………ⅩII
英文摘要……………………………………………………………ⅩIII
第一章 緒論…………………………………………………1
1-1 前言………………………………………………………………1
1-2 研究動機…………………………………………………………2
1-3 文獻回顧…………………………………………………………5
1-4 本文內容架構……………………………………………………10
第二章 實驗規劃及其方法…………………………………11
2-1 實驗規劃…………………………………………………………11
2-2 實驗儀器簡介……………………………………………………11
2-2.1 實驗型恆濕恆溫系統…………………………………………11
2-2.2 IR-reflow的負荷設備………………………………………12
2-2.3 印刷平台………………………………………………………13
2-2.4 網板……………………………………………………………13
2-2.5 刮刀……………………………………………………………13
2-2.6 掃描式電子顯微鏡(SEM)…………………………………13
2-2.7 鑽石切割機……………………………………………………14
2-2.8 模具……………………………………………………………14
2-2.9 萬能拉伸試驗機………………………………………………15
2-2.10 電子天秤……………………………………………………15
2-3 研究之材料………………………………………………………15
2-3.1 試片之製作……………………………………………………16
2-3.2 防焊漆 (Solder Mask)………………………………………16
2-3.3 封膠(Molding)………………………………………………17
2-4 實驗方法…………………………………………………………17
2-5 試片防銲漆厚度均勻性之驗證…………………………………19
2-5.1 實驗目的………………………………………………………19
2-5.2 驗證方法………………………………………………………19
2-5.3 驗證結果………………………………………………………20
第三章 半導體構裝體溫濕保存條件下厚度之影響………41
3-1 實驗目的與方法…………………………………………………41
3-2 去濕過程…………………………………………………………41
3-3 加濕過程…………………………………………………………42
3-3.1 實驗方法………………………………………………………42
3-3.2 實驗結果與討論………………………………………………42
第四章 黏著強度試驗……………………………………...50
4-1 實驗目的…………………………………………………………50
4-2 實驗結果…………………………………………………………50
4-2.1 30℃/30﹪RH環境下,環氧樹脂模製化合物與基板之
黏著強度試驗………………………………………………50
4-2.2 30℃/60﹪RH環境下,環氧樹脂模製化合物與基板之
黏著強度試驗…………………………………………………51
4-2.3 30℃/75﹪RH環境下,環氧樹脂模製化合物與基板之
黏著強度試驗………………………………………………52
4-2.4 60℃/30﹪RH環境下,環氧樹脂模製化合物與基板之
黏著強度試驗………………………………………………53
4-2.5 60℃/60﹪RH環境下,環氧樹脂模製化合物與基板之
黏著強度試驗………………………………………………53
4-2.6 75℃/30﹪RH環境下,環氧樹脂模製化合物與基板之
黏著強度試驗………………………………………………54
4-3 綜合比較與討論…………………………………………………55
第五章 結論與展望………………………………………83
參考文獻……………………………………………………..85
圖目錄
圖2-1實驗規劃流程圖………………………………………………22
圖2-2 溫溼度場建立流程圖………………………………………23
圖2-3 IR-reflow實驗流程圖……………………………………24
圖2-4 實驗型恆濕恆溫系統………………………………………25
圖2-5實驗型恆濕恆溫系統示意圖………………………………25
圖2-6 濕度控制器…………………………………………………26
圖2-7 控制流程圖…………………………………………………26
圖2-8 IR-reflow負荷設備………………………………………27
圖2-9 IR-reflow profile…………………………………………27
圖2-10印刷平台……………………………………………………28
圖2-11 網板與刮刀…………………………………………………28
圖2-12掃描式電子顯微鏡(JSM-6400型)…………………………29
圖2-13 鑽石切割機…………………………………………………29
圖2-14 模具…………………………………………………………30
圖2-15 MTS 810伺服式電腦控制動態材料試驗機………………30
圖2-16 MTS 458 控制平台及電腦輸出設備………………………31
圖2-17 精密電子天秤………………………………………………31
圖2-18試片尺寸示意圖……………………………………………32
圖2-19 試片製作流程圖……………………………………………33
圖2-20 夾具示意圖…………………………………………………34
圖2-21 渦電流膜厚計………………………………………………35
圖2-22 量測點示意圖………………………………………………36
圖2-23 (a) 試片一頻譜灰階值……………………………………36
圖2-23 (b) 試片一頻譜量測位置圖………………………………36
圖2-24 試片一頻譜分析圖…………………………………………38
圖2-25 試片一頻譜量測路線圖……………………………………38
圖3-1 試片 125℃去濕曲線圖………………………………………44
圖3-2 30℃/30%RH環境之吸濕曲線…………………………………45
圖3-3 30℃/60%RH環境之吸濕曲線…………………………………45
圖3-4 30℃/75%RH環境之吸濕曲線…………………………………46
圖3-5 60℃/30%RH環境之吸濕曲線…………………………………46
圖3-6 60℃/60%RH環境之吸濕曲線…………………………………47
圖3-7 75℃/30%RH環境之吸濕曲線…………………………………47
圖4-1 30℃/30﹪RH三種試片強度走勢圖………………………57
圖4-2 30℃/60﹪RH三種試片強度走勢圖………………………57
圖4-3 30℃/75﹪RH三種試片強度走勢圖………………………58
圖4-4 60℃/30﹪RH三種試片強度走勢圖………………………58
圖4-5 60℃/60﹪RH三種試片強度走勢圖…………………………59
圖4-6 75℃/30﹪RH三種試片強度走勢圖…………………………59
圖4-7 不同濕度試片一強度走勢圖………………………………60
圖4-8 不同濕度試片二強度走勢圖………………………………60
圖4-9 不同濕度試片三強度走勢圖………………………………61
圖4-10 不同溫度試片一強度走勢圖………………………………61
圖4-11 不同溫度試片二強度走勢圖………………………………62
圖4-12 不同溫度試片三強度走勢圖………………………………62
圖4-13 不同溫濕環境試片一強度走勢圖…………………………63
圖4-14 不同溫濕環境試片二強度走勢圖…………………………63
圖4-15 不同溫濕環境試片三強度走勢圖…………………………64
圖4-16 30℃/30%RH試片三斷面圖………………………………64
圖4-17 30℃/60%RH試片三斷面圖………………………………65
圖4-18 30℃/75%RH試片三斷面圖………………………………65
圖4-19 60℃/30%RH試片三斷面圖………………………………66
圖4-20 60℃/60%RH試片三斷面圖………………………………66
圖4-21 75℃/30%RH試片三斷面圖…………………………………67
圖4-22 30℃/30%RH試片三截面圖…………………………………67
圖4-23 30℃/60%RH試片三截面圖…………………………………68
圖4-24 30℃/75%RH試片三截面圖…………………………………68
圖4-25 60℃/30%RH試片三截面圖…………………………………69
圖4-26 60℃/60%RH試片三截面圖…………………………………69
圖4-27 75℃/30%RH試片三截面圖…………………………………70
表目錄
表2-1 膜厚計量測點數值表………………………………………39
表2-2 試片厚度灰階值統計表…………………………………40
表 3-1 試片於六種不同溫濕保存環境吸濕表……………………49
表4-1 試片初始界面強度值………………………………………71
表4-2 30℃/30%RH試片平均強度值………………………………72
表4-3 30℃/60%RH試片平均強度值………………………………72
表4-4 30℃/75%RH試片平均強度值………………………………72
表4-5 60℃/30%RH試片平均強度值………………………………73
表4-6 60℃/60%RH試片平均強度值………………………………73
表4-7 75℃/30%RH試片平均強度值………………………………73
表4-8 30℃/30%RH試片一強度遞減率……………………………74
表4-9 30℃/30%RH試片二強度遞減率……………………………74
表4-10 30℃/30%RH試片三強度遞減率……………………………75
表4-11 30℃/60%RH試片一強度遞減率……………………………75
表4-12 30℃/60%RH試片二強度遞減率……………………………76
表4-13 30℃/60%RH試片三強度遞減率……………………………76
表4-14 30℃/75%RH試片一強度遞減率……………………………77
表4-15 30℃/75%RH試片二強度遞減率……………………………77
表4-16 30℃/75%RH試片三強度遞減率……………………………78
表4-17 60℃/30%RH試片一強度遞減率……………………………78
表4-18 60℃/30%RH試片二強度遞減率……………………………79
表4-19 60℃/30%RH試片三強度遞減率……………………………79
表4-20 60℃/60%RH試片一強度遞減率……………………………80
表4-21 60℃/60%RH試片二強度遞減率……………………………80
表4-22 60℃/60%RH試片三強度遞減率……………………………81
表4-23 75℃/30%RH試片一強度遞減率……………………………81
表4-24 75℃/30%RH試片二強度遞減率……………………………82
表4-25 75℃/30%RH試片三強度遞減率……………………………82


參考文獻1.Grank, J.,“The Mathematics of Diffusion,” 2ed., Clarendon ,Press, Oxford, 1967.2.Loos, A. C.,. Springer, G. S., “Moisture Absorption of Polyester-E Glass Composites,” Journal of Composite Materials, Vol. 14, 99. 142-154,1980.3.Springer, G. S. , Environmental Effects on Composite Materials ,Technomic, Westport, USA, 1984.4.Lin, S.H., "Concentration Dependent Diffusion in a Finite Slab with and without Chemical Reaction," Int. J. Enging. Sci. , Vol. 17,pp.373-378, 1992.5.Q.S.M. Ilyas B. Poborets , “Evaluation of Moisture Sensitivity of Surface Mount Plastic Packages” ,Proceedings of the ASME Conference ,1993 , pp﹒145-156.6.Sheng Liu﹐.Yuhai Mei﹐“Behavior of Delaminated Plastic IC Packages Subjected to Encapsulation Cooling﹐Moisture Absorption﹐and Wave Soldering” ﹐IEEE Transactions on Components﹐Packaging﹐and Manufacturing Technology—Part A﹐Vol﹒18﹐No﹒3﹐September 1995﹐pp﹒634—645.7.Richard L﹒Shook﹐Timothy R﹒Conrad﹐Sriama Sastry﹐ David B﹒Steele﹐“Diffusion Model to Derate Moisture Sensitive Surface Mount IC’s for Factory Use Conditions ”﹐IEEE Transactions on Components﹐Packaging﹐and Manufacturing Technology-Part C﹐Vol19﹐No﹒2﹐April 1996﹐pp﹒110-118.8.Galloway, J. E.,.Miles, B. M., “Moisture Absorption and Desorptions for Plastic Ball Grid Array packages,” IEEE Transactions on Components, Packaging, and Manufacturing technology-Part A, Vol. 20, No. 3, pp. 274-279, September 1997.9.R﹒L﹒Shook﹐.V﹒S﹒Sastry﹐“Influence of Preheat and Maximum Temperature of the Solder-Reflow Profile on Moisture Sensitive IC’s”﹐IEEE Electronic Components and Technology Conference﹐1997﹐pp﹒1041-1048.10.Richard L﹒Shook﹐Brian T﹒Vaccaro﹐.Daniel L﹒Gerlach﹐“Method for Equivalent Acceleration of JEDEC/IPC Moisture Sensitivity Levels”﹐ Annual International Reliability Physics Symposium﹐Reno﹐Nevada﹐1998﹐pp﹒214—219.11.E﹒H﹒Wong﹐K﹒C﹒Chan﹐T﹒B﹒Lim﹐T﹒F﹒Lam﹐“Non-Fickian Moisture Properties Characterisation and Diffusion Modeling for Electronic Packages”﹐IEEE 1999 Electronic Components and Technology Conference﹐pp﹒302-306.12.Richard L﹒Shook﹐and Jason P﹒Goodelle﹐“Handling of Highly-Moisture Sensitive Components-An Analysis of Low-Humidity Containment and Baking Schedules”﹐IEEE Transactions on Electronics Packaging Manufacturing﹐Vol﹒23﹐No﹒2﹐April 2000﹐pp﹒81-86.13.Yizhe Elisa Huang﹐Debbie Hagen﹐Glenn Dody and Terry Burnette﹐“Effect of Solder Reflow Temperature Profile on Plastic Package Delamination”﹐1998 IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium﹐pp﹒105-111.14.B﹒K﹒Bhattacharyya﹐W﹒A﹒Huffman﹐W﹒E﹒Jahsman ﹐B﹒Natarajan﹐“Moisture Absorption and Mechanical Performance of Surface Mountable Platic Packages ”﹐IEEE﹐1995﹐pp﹒49—58.15.Yong Chua Teo﹐Ee Hua Wong﹐Thiam Beng Lim“Enhancing Moisture Resistance of PBGA”﹐IEEE Electronic Components and Technology Conference﹐1998﹐pp﹒930-935.16.Tu Nguyen﹐Gary Atlas﹐“PQFP Moisture Bake Out Process Optimization”﹐1998 IEEE﹐pp﹒21-35.17.Sung Yi﹐Jing Sua Goh﹐Ji Cheng Yang﹐“Residual Stresses in Plastic IC Packages During Surface Mounting Process Preceded by Moisture Soaking Test”﹐IEEE Transactions on Components﹐Packaging﹐and Manufacturing Technology—Part B﹐Vol﹒20﹐No﹒3﹐August 1997﹐pp﹒247-255.18.A﹒A﹒O﹒Tay﹐T﹒Y﹒Lin﹐“Moisture Diffusion and Heat Transfer in Plastic IC Packages”﹐IEEE InterSociety Conference on Thermal Phenomena﹐1996﹐pp﹒67-73.19.Rainer Dudek﹐Peter Sommer﹐Bernd Michel﹐Peter Alpern﹐Christian Birzer﹐Rainer Tilgner﹐“Investigations on Popcorn Cracking of T—QFP Packages ” ﹐IEEE Electronic Components and Technology Conference﹐1998﹐pp﹒944—951.20.Kazuhiro Tada and Hirofumi Fujioka﹐“Properties of Molding Compounds to Improve Package Reliability of SMD’s”﹐ IEEE Transactions on Components and Packaging Technology﹐Vol﹒22﹐No﹒4﹐December 1999﹐pp﹒534-540.21.Jesse E﹒Galloway﹐Barry M﹒Miles﹐“Moisture Absorption and Desorption Predictions For Plastic Ball Grid Array Packages”﹐InterSociety Conference on Thermal Phenomena﹐IEEE﹐1996﹐pp﹒180—186.22.Ee Hua Wong﹐Yong Chua Teo﹐Thiam Beng Lim﹐“Moisture Diffusion and Vapour Pressure Modeling of IC Packaging”﹐IEEE Electroincs Components and Technology Conference﹐1998﹐pp﹒1372-1378.23.Hagen, D., McDermott, J., Bigler, J., Cavasin, D., Primeaux, F.,Tran, Z., Afshar, D., "Lead on Chip TSOP Assembly Process for Fast Sram with Peripherally Located Bond Pads," IEEE/CHMT Electronics Manufacturing Technology Symposium, pp. 39-47,1992.24.Ohizumi, S., Nagasawa, M., Igarashi, K., Kohmoto, M.," Analytical and Experimental Study for Designing MoldingCompounds for Surface Mounting Devices," IEEE, pp. 632-640,1994.25.Bujard, P., Kuhnlein, G., Ino, S., Shibara, T., "ThermalConductivity of Molding Compounds for Plastic Packaging," IEEE Transaction on Components Packaging and ManufacturingTechnology-Part A. Vol. 17, No.4, pp. 527-532, 1994.26.Ahn, S.H., Kwon, Y .S., "Popcorn Phenomena in a Ball Grid Array Package," lEEE Transaction on Components, Packaging. and Manufacturing Technology -Part B, Vol. 18, No.3, pp. 491-495,1995.27.Lee, H., Earmme, Y .Y ., " A Fracture Mechanics Analysis of the Effects of Material Properties and Geometries of Components on Various Types of Package Cracks," IEEE Transaction on Components. Packaging, and Manufacturing Technology -Part A,Vol. 19, No.2, pp. 168-177,1996.28.Saitoh, T., Matsuyama, H, Toya, M., "Numerical Stress Analysis of Resin Cracking in LSI Plastic Packages under Temperature Cyclic Loading-PartIIl: Material Properties and Package Geometries," IEEE Transaction on Components., Packaging, and Manufacturing Technology -Part B, VoI. 21, No.4, pp. 407-412,1998.29.Lee, C., Teck Chin Wong., Pape, H., "A New Leadframe DesignSolution tor Improved Popcorn Cracking Performance," IEEETransaction on Components, Packaging and ManufacturingTechnology -Part B, Vol. 21, No.1, pp. 3-12,1998.30.Tay, A.A.O., Goh, K.Y., "A Study of Delemination Growth in the Die-Attach Layer of Plastic IC Packages Under Hygrothermal Loading During Solder Reflow ," Electronic Components and Technology Conference, pp. 694-701,1999.31.Kuo, A.Y., Chen, W.T., Nguyen, L.T., Chen, K.L., Slenski, G.,"Popcorning A Fracture Mechanics Approach," ElectronicComponent and Technology Conference, pp. 869-873, 1996.32.Yip, L., Massingill, T ., Naini, H., " Moisture Sensitivity Evaluation of Ball Grid Array Packages," IEEE 46th Electronic Components and Technology Conference, pp. 829-835, 1996.33.LeGall, C.A., Qu, .T., McDowell, D.L., "Delamination Cracking in Encapsulated Flip Chips," Electronic Components and Technology Conference, pp. 430-434, 1996.34.Saitoh, T., Matsuyama, H., Toya, M., "Linear Fracture Mechanics Analysis on Growth of Interfacial Delamination in LSI Plastic Packages under Temperature Cyclic Loading," IEEE Transactions on Components. Packaging and Manufacturing Technology —Part B, Vol. 21, No.4, pp. 422-427,1998.35.邱以泰,胡應強,“PBGA爆米花現象電腦模擬與實驗結果,”工業材料,141期, PP. 145-152, 1998.36.Lim, J. H., Lee, K. W., Park, S. S., Earmme, Y. Y., “Vapor Pressure Analysis of Popcorn Cracking in Plastic IC Packages by Fracture Mechanics,” IEEE/CMPT Electronics Packaging Technology Conference, pp. 36-42, 1998.37.葉銘泉, 許永昱 , 郭家泰 ,‘底膠填充材料在不同環境及介面條件下之介面黏著強度與破壞模式分析’ , 中華民國機械工程學會第十八屆全國學術研討會論文集 ,第五冊, 2000 , pp367-371.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top