跳到主要內容

臺灣博碩士論文加值系統

(3.238.225.8) 您好!臺灣時間:2022/08/09 00:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴昆
研究生(外文):Kuen Lai
論文名稱:摻釹鐿鋁石榴石晶體脈衝雷射焊接之吸收率及焊後變形研究
論文名稱(外文):A Study on the Absorptivity and Post Weld Deformation in Pulsed Nd:YAG Laser Welding
指導教授:光灼華
指導教授(外文):Jao-Hwa Kuang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:136
中文關鍵詞:吸收率脈衝雷射焊後變形
外文關鍵詞:post weld deformationabsorptivitypulse laser
相關次數:
  • 被引用被引用:1
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1

本論文主旨在探討脈衝式含釹鐿鋁石榴石晶體(Nd:YAG)雷射,對不鏽鋼材質(SS304L)銲接時,其雷射能量吸收機制,並以吸收率描述此焊接過程之能量吸收行為。利用實驗量測得焊點剖面形狀參數,如銲池寬、銲池深、銲池斷面積及銲池體積大小,與有限元素法(FEM)模擬所得結果,以進行銲接過程中此吸收率值之估算。模擬過程中採用高斯(Gusaaian)分佈描述雷射光束切面之能量密度分佈情形。為驗證此經由單脈衝實驗估算結果值之精確性,乃將此估算出之雷射脈波吸收率,代入有限元素模型中。模擬多重雷射脈波之焊接情形,並將模擬結果與實驗結果進行比對以確定其精確性。吸收率之估算結果顯示,吸收率與雷射輸出之脈衝能量成反比,結果亦顯示由銲池斷面積或銲池體積比對可得較穩定吸收率值。此外,再利用有限元素法之熱彈塑模式模擬此脈衝雷射焊接焊接之固化過程,顯示銲池於固過程中,因相變化造成之收縮現象,導致熔池固化後極複雜之殘留應力分佈。此殘留應力分佈將造成雷射焊接域之收縮變形,此銲後變形特徵是造成精密銲接,如光電元件成品良率之關鍵因素。


The energy absorbing behavior of stainless steel 304L during the pulsed Nd:YAG laser welding is investigated in this thesis. The equivalent absorptivity is estimated from the comparison of measured and finite element method (FEM) results simulated melting pool shape parameters, e.g. pool width, pool depth, cross-section area and total volume of the pool. To simulate the actual pulsed laser beam, the energy density of heating source is performed as a Guassian distribution in the transection of a circular laser beam. For evaluating the feasibility and the accuracy of the estimated equivalent absorptivity, the multi-pulsed Nd:YAG laser welding is simulated by using the estimated absorptivities. A good agreement between this simulated and measured melting pool shapes are found in the multi-pulsed laser welding. The equivalent absorptivity can be interpolated from different parameters of the molten pool. However, absorptivity curve fitted from the cross-section area and total volume of the melting pool provide a more stable value. Results also indicate that the absorptivity and the pulse energy are in inverse proportion. The thermal-elastic-plastic FEM model is employed to simulate the fusion and solidification process of the pulsed laser welding. A complicate residual stress distribution introduced from the shrinkage in the solidification process is also calculated and presented. The distribution of post-weld-deformation near the melting pool has also been studied in this thesis. This post-weld-deformation may be a key factor in high precision laser welding, e.g. laser packaging for the optoelectronic components. The absorptivity estimated in this thesis may be helpful to simulate the laser welding process accurately.


Acknowledgements
Contents
List of Figures
List of Tables
Abstract
Nomenclature
Chapter 1Introduction
1.1.Background and motivation
1.2.Literature review
1.2.1.Temperature profile for laser welding
1.2.2.Absorptivity
1.2.3.Residual stresses
1.3.Organization of the thesis
Chapter 2Numerical methods for Nd:YAG laser welding
2.1.Introduction
2.2.Description of the problem
2.2.1.Absorbed mechanism of laser welding
2.2.2.Characteristics of laser power distribution
2.2.3.Numerical model details
2.2.4.Assumptions in the FEM model
2.3.Associated theories
2.3.1.Equations of mechanics
2.3.2.Equations of heat transfer
2.3.3.The analysis model of coupling
Chapter 3Experimental and numerical results
3.1.Experimental equipments
3.1.1.Laser source
3.1.2.Workstation for laser welding
3.1.3.The power meter and detector
3.2.Environments and laser parameters
3.3.The estimating equivalent absorptivity for a stainless steel
3.3.1.Definition of the absorptivity
3.3.2.Estimation of equivalent absorptivities
3.3.3.Solidification of the molten pool
3.3.4.Multi-pulsed Nd:YAG laser welding
3.3.5.The effect of gold plating on the equivalent absorptivity of 304L stainless steel
Chapter 4Conclusions
Appendix A
Appendix B
Appendix C
References
Vita


[1]李鴻均, 2001, 2000年全球光電產業及技術概況, 光電科技工業協進會, 台北.[2]李鴻均, 2001, 2000年我國光電產業概況, 光電科技工業協進會, 台北.[3]Palais, J. C., 1997, Fiber Optic Communications, Prentice Hall, New Jersey.[4]Ready, J. F., 1977, Industrial Applications of Lasers, Academic Press, San Diego.[5]Sparks, M., 1976, “Theory of Laser Heating of Solids : Metals,” Journal of Applied Physics, 47, pp. 837-849.[6]Lax, M., 1977, “Temperature Rise Induced by a Laser Beam,” Journal of Applied Physics, 48, pp. 3919-3924.[7]Mazumder, J., and Steen, W. M., 1980, “Heat Transfer Model for CW Laser Material Processing,” Journal of Applied Physics, 51, pp. 941-947.[8]Chen, I., and Lee, S., 1983, “Transient Temperature Profiles in Solids Heated with Scanning Laser,” Journal of Applied Physics, 54, pp. 1062-1066.[9]Kou, S., Sun, D., K. and Le, Y., P., 1983, “A Fundamental Study of Laser Transformation Hardening,” Metallurgical Transactions A, 14A, pp. 643-653.[10]Ph. Barillot, 1990, “Numerical Simulation of Crater Formation Heating by Laser Beam,” Numerical Heat Transfer Part B, 17, pp. 245-256.[11]Maier, C., Schaaf, P. and Gonser, U., 1992, “Calculation of the Temperature Profile for Laser Treatment of Metallic Samples,” Materials Science and Engineering A, A150, pp. 271-280.[12]Molian, P. A., 1987, “Fatigue Characteristics of Laser Surface-Hardened Cast Irons,” Journal of Engineering Materials Technology, 109, pp. 179-187.[13]Lankalapalli, K. N., Tu, J. F., Leong, K. H., and Gartner, M., 1999, “Laser Weld Penetration Estimation Using Temperature Measurements,” Journal of Manufacturing Science and Engineering, 121, pp. 179-188.[14]Zavecz, T. E., and Saifi, M. A., 1975, “Metal Reflectivity under High-Intensity Optical Radiation,” Applied Physics Letters, 26, pp. 165-168.[15]Robin, J. E., and Nordin, P., 1975, “Spectral Absorptance at 3.8-μ Wavelength for Aluminum and Pyroceram at Elevated Temperatures,” Applied Physics Letters, 27, pp. 493-495.[16]Wieting, T. J., and Schriempf, J. T., 1976, “Infrared Absorptances of Partially Odered Alloys at Elevated Temperatures,” Journal of Applied Physics, 47, pp. 4009-4011.[17]Wieting, T. J., and DeRosa, J. L., 1979, “Effects of Surface Condition on the Infrared Absorptivity of 304 Stainless Steel,” Journal of Applied Physics, 50, pp. 1071-1078.[18]Sun, Y. S., Weng, C. I., Chen, T. C., and Li, W. L., 1996, “Estimation of Surface Absorptivity and Surface Temperature in Laser Surface Hardening Process,” Japanese Journal of Applied Physics, 35, pp. 3658-3664.[19]Wang, J. T., Weng, C. I., and Chang, J. G., 2000, “The Influence of Temperature and Surface Conditions on Surface Absorptivity in Laser Surface Treatment,” Journal of Applied Physics, 87, pp. 3245-3253.[20]Molian, P. A., 1987, “Fatigue Characteristics of Laser Surface-Hardened Cast Irons, ” Journal of Engineering Materials and Technology, 109, 179-187.[21]Saxena, V. K., Bharti, A., Malakondaiah, G. and Radhakrishnan, V. M., 1993, “Effect of Laser Surface Trearment on Fatigue crack Growth Resistance in An Fe-Mn-Al Austenitic Steel,” International Journal of Fatigue, 15, pp. 369-375.[22]van Brussel, B. A., Hegge, H. J., De Hosson, J. Th. M., Delhez, R., de Keijser, Th. H., and Van der Pers, N. M., 1991, “Development of Residual Stress and Surface Cracks in Laser Treated Low Carbon Steel,” Scripta Metallurgica, 25, pp. 779-784.[23]de Freitas, M., Pereira, M. S., Michaud, H., and Pantelis, D., 1993, “Analysis of Residual Stresses Induced by Laser Processing,” Materials Science and Engineering A, A167, pp. 115-122.[24]Kobayashi, Y., Nakamura, M. and Suzuki, T., 1982, “Effect of Heat Treatment on Residual Stress and Electron Hall Mobility of Laser Annealed Silicon-on-Sapphire,” Applied Physics Letter, 40, pp. 1040-1042.[25]Dahmani, F., Schmid, A. W., Lambropoulos, J. C. and Burns, S., 1998, “Dependence of Birefringence and Residual Stress near Laser-Induced Cracks in Fused Silica on Laser Fluence and on Laser-PulseNumber,” Applied Optics, 37, pp. 7772-7784.[26]沈茂田, 2000, “雷射二極體模組殘留應力及潛變效應之研究”, 中山大學機械工程研究所博士論文.[27]施性坤, 2001, “雷射焊接技術構裝雷射模組之焊後位移研究”, 中山大學光電工程研究所碩士論文.[28]Lippert, T., Webb, R. L., Langford, S. C. and Dickinson, J. T., 1999 “Dopant Induced Ablation of Poly(MethylMethacrylate) at 308 nm,” Journal of Applied Physics, 85, pp. 1838-1847.[29]Lippert, T., Langford, S. C., Wokaun, A., Savas, G. and Dickinson, J. T., 1999 “Analysis of Neutral Fragments from Ultraviolet Laser Irradiation of A Photolabile Triazeno Polymer,” Journal of Applied Physics, 86, pp. 7116-7122.[30]Wei, P. S. and Ho, J. Y., “Energy Considerations in High-Energy Beam Drilling,” International Journal of Heat Mass Transfer, 33, pp. 2207-2217.[31]Migliore, L., 1996, Laser Materials Processing, M. Dekker, New York.[32]刘江龙, 邹至荣, 苏宝容, 1996, 高能束热处理, 机械工业出版社, 北京.[33]矢島達夫, 霜田光一, 稲場文男, 難波進, 1989, 新版レ─ザ─ハンドブック, 朝倉書局, 東京.[34]Yariv, A., 1997, Optical Electronics in Modern Communications, Oxford, New York.[35]Roper, J. R., Vossler, J. and Osborn, D., 1992, “Thermal Stress and Strain Analysis in Traveling Autogenous Welds,”MARC user’s Meeting in U.S.A., pp. 313-333.[36]Lau, J. H., 1993, Thermal Stress and Strain in Microelectronics Packaging, Van Nostrand Reinhold, New York.[37]MARC Analysis Research Corporation, 1996, Volume F, Part 2, MARC Analysis Research Corporation, Palo Alto.[38]MARC Analysis Research Corporation, 1996, Volume F, Part 3, MARC Analysis Research Corporation, Palo Alto.[39]MARC Analysis Research Corporation, 1996, Volume F, Part 4, MARC Analysis Research Corporation, Palo Alto.[40]Smithells, C. J. and Brandes, E. A., 1976, Metals Reference Book, Butterworths, London.[41]Pecht, M. G., Agarwal, R., McCluskey, P., Dishongh, T., Javadpour, S. and Mahajan, R., 1999, Electronic Packaging Materials and Their Properties, CRC Press, Boca Raton.[42]MSC.Software Corporation, 2000, MSC.Marc User’s Guide, Version 2000, MSC.Software Corporation, Los Angeles.[43]MSC.Software Corporation, 2000, MSC.Marc Volume A: Theory and User Information, Version 2000, MSC.Software Corporation, Los Angeles.[44]MSC.Software Corporation, 2000, MSC.Marc Volume C: Program Input, Version 2000, MSC.Software Corporation, Los Angeles.[45]MSC.Software Corporation, 2000, MSC.Marc Volume B: Element Library, Version 2000, MSC.Software Corporation, Los Angeles.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top