# 臺灣博碩士論文加值系統

(3.229.117.123) 您好！臺灣時間：2022/08/12 18:12

:::

### 詳目顯示

:

• 被引用:0
• 點閱:263
• 評分:
• 下載:0
• 書目收藏:2
 摘要 諧波驅動器 ( Harmonic drive ) 為一種高減速比的傳動裝置，擁有質量輕、零件少、體積小、負載大等優點。在高精度的精密機械傳動系統，如機器手的驅動系統減速機構，已為不可或缺的傳動元件。文中將結合馬達與諧波驅動器兩個不同的子系統，利用拉格朗日方程式 ( Lagrange’s equation ) 建立整體機電系統的運轉模式。本文分就數值模擬與實驗驗證兩方面，探討考慮馬達動態特性之諧波驅動器系統的動態響應。並採用四齒差杯式諧波驅動器與二齒差環式兩不同諧波驅動器，探討兩者對系統動態響應的影響。數值模擬方面，係採用六階藍日卡達法 ( Runge-Kutta method ) 進行數值求解。配合自行設計之模組式測試台，分析比較數值模擬與實驗測試結果，以驗證數值模擬的可靠性與可用性。
 AbstractThe harmonic drive mechanism has been used wildly in industrial robots. High reduction ratio, few components, and quiet torque transfer are the advantages of this device. In this thesis, the dynamic characteristic of an integrated DC motor and harmonic driver system is investigated. The dynamic equations of the harmonic drive systems are derived by applying Lagrange’s equation. Two different harmonic driver designs, i.e. a cup-type with two teeth difference and a circular type with four teeth difference are used in the analysis. The system responses are simulated by employing the sixth order Runge-Kutta method. Comparison between numerical simulation results and experimental results, it indicates that the proposed model is feasible and accurate for simulating the dynamic response of an electro-mechanical integrated harmonic drive system.
 第一章 緒論1 1-1 前言1 1-2 文獻回顧5 1-3 章節與組織8第二章 諧波驅動器系統數學模式推導9 2-1 諧波驅動器簡化模式9 2-2 諧波驅動器系統之運動方程式16 2-3 驅動馬達轉速與負載模式19 2-3-1 直流馬達轉速與負載變化模式19 2-3-2 伺服馬達轉速與負載關係模式23 2-4 諧波驅動器機電整合系統動態響應數值解析27第三章 實驗驗證與理論模擬30 3-1 諧波驅動器系統測試台之配置30 3-2 系統組件參數抽取40 3-3 實驗與數值結果之分析與比較48第四章 結論 68附錄A 諧波驅動器動態誤差參數抽取 69附錄B 二階微分方程降階處理 74附錄C 加速度計串並聯用於組件動態參數量測78參考文獻88
 參考文獻Abdelraheim, A. and Seireg A., 1995, “Vibratory Response and Stability of Systems Driven by Harmonic Drives,” Machine Vibration, Vol. 3, pp. 192-199.Charlson, J. H., 1985, “Harmonic Drives for Servomechanisms,” Machine Design, Vol. 57, No. 1, pp. 102-106.Chang, S. H. and Chung, S. D., 1998, “Analysis of the Kinematic Error of a Face-Gear Harmonic Drive,” Journal of the Chinese Society of Mechanical Engineers, Vol. 191,No 4, pp. 359-367.Chedmail, P. and Martineau, J. P., 1996, “Characterization of Friction Parameters of Harmonic Drive Actuators,” International Conference on Dynamics and Control of Structures in Space, Vol. 1, pp. 567-581.Doty, K. L., Melchiorri, C., and Bonivento, C., 1993, “Theory of Generalized Inverses Applied to Robotics,” International Journal of Robotics Research, Vol. 12, No. 1, pp. 1-19.Golder, I. and Hashimoto, M. 1998, “Torque Control of Harmonic Drive Gears with Build-In Sensing,” Industrial Electronics Society, Proceedings of the 24th Annual Conference of the IEEE, Vol. 3, pp. 1818-1823.Hashimoto, M. and Kiyosawa, Y, 1993,“A Torque Sensing Technique for Robots with Harmonic Drives,” IEEE, Robotics and Automation , Vol. 91, pp. 108-116.Hess, D. P. and Soom, A., 1990, “Friction at a Lubricated Line Contact Operating at Oscillating Sliding Velocities,” ASME, Journal of Tribology, Vol. 112, No. 1, pp. 147-152.Hidaka, T., Ishida, T., Zhang, Y., Sasahara, M. and Tanioka, Y, 1990,“Vibration of a Strain Wave Gearing in an Industrial Robot,” Proceedings of the 1990 International Power Transmission and Gearing Conference - New Technology Power Transmission, New York, pp. 789-794.Hsia, L., 1988, “The Analysis and Design of Harmonic Gear Drives,” Proceedings of 1988 IEEE International conference on Systems, Man and Cyberneetics, Vol. 1, pp. 616-619.Jeon, H. S. and Oh, S. H., 1999, “A Study on Stress and Vibration Analysis of Steel and Hybrid Flexspline for Harmonic Drive,” Composite Structures , Vol. 47, pp. 827-833.Jeong, K. S. and Oh, S. H., 1995, “Development of the Composite Flexspline for a Cycloid -Type Harmonic Drive Using Net Shape Manufacturing Method,” Composite Structures , Vol. 32, pp. 557-565.Kicanski, N., Golddenberg, A., and Jia, S., 1993, “An Experimental Study of Nonlinear Stiffness, Hysteresis, and Friction Effects in Robot Joint with Harmonic Drives and Torque Sensors,” Proceeding of the Third International Symposiumon Experimental Robotics, Vol. 1, pp. 147-154.Komdo, K. and Takada, J., 1990, “Study on Tooth Profiles of the Harmonic Drive,”Journal of Mechanical Design, Vol. 1, pp. 112-131.Koose, V., 1997, “Analytical Investigation of the Change in Phase Angle between the Wave Generator and the Teeth Meshing Zone in High-Torque Mechanical Harmonic Drives,” Mech. Mach. Theory, Vol. 32, pp. 533-538.Maiti, R. and Roy, A. K., 1996, “Minimum Tooth Difference in Internal - External Involute Gear Pair,” Mech. Mach. Theory, Vol. 5, No. 4, pp. 475-485.Marilier, T. and Richard, J. A., 1989, “Non-linear Mechanic and Electric Behavior of a Robot Axis with a Harmonic Drive Gear,” Robotics and Computer Integrated Manufacturing, Vol. 5, No. 2, pp. 129-136.Musser, C. W., 1960, “The Harmonic Drive：Breakthrough in Mechanical Drive Design,” Machine Design, Vol. 32, No. 8, pp. 160-173.Oh, S. H. and Chang, S. H., 1997, “Improvement of the Dynamic Properties of a Steel -Composite Hybird Flexspline of a Harmonic Drive,” Composite Structures, Vol. 38, No. 1, pp. 251-260.Seyfferth, W., Maghzal, A. J., and Angeles, J., 1995, “Nonlinear Modeling and Parameter Identifications of Harmonic Drive Robotic Transmissions,” Proceeding of IEEE International Conference on Robotic and Automation, Vol. 3, pp. 3027-3032.Taghirad, H. D. and , P. R., 1996, “An Experimental Study on Modeling and Identification of Harmonic Drive Systems,” Proceedings of the 35th Conference on Decision and Control, Kobe Japan, pp.4725-4730.Taghird, H. D. and , P. R., 1997, “Intelligent Torque Sensing and Robust Torque Control of Harmonic Drive Under Free-Motion,” Proceedings of IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1749-1754.Taghird, H. D. and , P. R., 1997, “ Robust Torque Control of Harmonic Drive Under Constrained Motion,” Proceedings of IEEE International Conference on Robotics and Automation, Vol. 1, pp. 248-253.Taghird, H. D., Helmy, A. and , P. R., 1997, “Intelligent Build-In Torque Sensor for Harmonic Drive System,” Proceedings of the 1997 IEEE Instrumentation and Measurement Technology Conference , Vol. 1, pp. 969-974.Taghird, H. D. and , P. R., 1998, “Modeling and Parameter Identification of Harmonic Drive Systems,” ASME, Journal of Dynamic Systems, Measurement, and Control, vol. 120, pp. 439-444.Tuttle, T. D. and Seering, W., 1993, “Modeling a Harmonic Drive Gear Transmission,” Proceeding of IEEE International Conference on Robotics and Automation, Vol. 2, pp. 624-629.Tuttle, T. D. and Seering, W. P., 1996, “A Nonlinear Model of a Harmonic Drive Gear Transmission,” IEEE Transaction on Robotics and Automation, Vol. 12, No. 3, pp. 368-374.李適中，1991，“ 直流馬達速度控制，伺服系統 ”，全華圖書。范又功，曹炳和，1995，“ 諧波齒輪傳動技術手冊 ”， 國防工業出版社(北京)。胡晉哲，2001，“ 不同力矩補償機構對滾子凸輪系統動態特性影響之分析 ”， 國立中山大學機械工程研究所碩士論文。陳其俊，1996，“ 加速規串並聯用於聯軸器之剛度量測 ”，國立中山大學機械工程研究所碩士輪文。傅銘田，2000，“ 諧波齒輪之動態響應 ”，國立中山大學機械工程研究所碩士論文。
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 無相關期刊

 1 諧波齒輪傳動系統之結構分析 2 諧波驅動系統之力矩控制 3 諧波齒輪之動態響應 4 雙圓弧齒形諧波齒輪之共軛範圍分析 5 諧波齒輪波發生器安裝位置對齒部應力影響分析 6 諧波傳動機構之波形產生器最佳化設計與分析 7 諧波傳動機構之柔輪最佳化設計與分析 8 諧波齒輪傳動系統之有限元素分析 9 以子系統反向設計為基礎之諧波驅動器位置控制 10 諧波驅動系統之力矩漣波前饋補償與負載干擾補償 11 SHG諧波齒輪之柔輪幾何設計與分析 12 諧波傳動機構之多邊形波形產生器最佳化設計與分析 13 諧波齒輪傳動系統之三維有限元素分析 14 諧波傳動機構之最佳化設計及製作 15 具力矩感測之諧波驅動系統伺服控制

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室