跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/22 18:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡正和
研究生(外文):Cheng-Ho Chien
論文名稱:樑之平面應變有限元素挫曲分析
論文名稱(外文):PLANE STRAIN BUCKLING FINITE ELEMENT ANALYSIS OF BEAMS
指導教授:劉崇富劉崇富引用關係
指導教授(外文):Chorng-Fuh Liu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:48
中文關鍵詞:挫曲平面應變彈性力學位移型有限元素
外文關鍵詞:elasticitybucklingdisplacement-type finite elementplane strain
相關次數:
  • 被引用被引用:2
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以平面應變有限元素分析樑的挫曲行為。針對具有相當厚度的樑,以彈性力學為基礎,推導位移型有限元素列式,沒有經過其他的簡化及假設,對於所有的位移邊界條件都能如實加上,與傳統只根據中性面行為的樑理論分析不同,因此應該可以較傳統分析更準確的求得樑在非穩定時的挫曲負荷及模態,對於樑結構的分析具備更佳的精確度與適用性。
本文數值分析結果分別與尤拉樑理論、Timoshenko樑理論以及高階樑理論結果做比較,以了解本文之方法與其他理論之差別,並探討幾何形狀、軸向負載形式以及位移邊界條件對於樑之挫曲強度的影響。
In the present study, the buckling behavior of beams is analyzed by a plane strain finite element. The displacement-type finite element formulation is based on elasticity and has no any other simplification and assumption except that the beam is of moderate depth. Also all the displacement boundary conditions can be imposed exactly. These are the advantages that beam theories of conventional approach, which simulate beams with neutral plane behaviors, do not have. Therefore the present analyses should be able to obtain buckling load and buckling mode more accurately than conventional method.
Numerical values of buckling loads of the present approach will be compared with previously published results of the Euler-Bernoulli beam theory and the Timoshenko beam theory, and further with the high order beam theory to reveal their differences. The effects of the geometry ratio, the distribution of axial loads and the displacement boundary conditions on buckling of beams are also discussed.
摘要 ………………………………………………………………I
目錄 ………………………………………………………………iii
表目錄 ……………………………………………………………v
圖目錄 ……………………………………………………………vii
第一章 緒論 …………………………………………………1
1-1 前言 …………………………………………………1
1-2 文獻回顧 ………………………………………………2
1-2-1 尤拉樑理論 …………………………………………2
1-2-2 Timoshenko樑理論 …………………………………3
1-2-3 高階剪切變形理論 …………………………………5
1-2-4 三維彈性力學分析法 ………………………………6
1-2-5 有限元素法 …………………………………………7
第二章 樑之平面應變有限元素挫曲分析 ……………………8
2-1 前言 …………………………………………………8
2-2 理論推導 ………………………………………………8
第三章 問題解析 ………………………………………………18
3-1 前言 …………………………………………………18
3-2 問題描述 ……………………………………………18
(1) 材料性質 ……………………………………………18
(2) 幾何比例 ……………………………………………18
(3) 邊界條件 ……………………………………………19
(4) 元素選取 ……………………………………………20
(5) 挫曲強度之無因次化 ………………………………20
第四章 結果與討論 ……………………………………………23
4-1 前言 …………………………………………………23
4-2 收斂試驗 ……………………………………………23
4-3 文獻與本文結果之比較與討論 ……………………25
第五章 結論與建議 ………………………………………41
5-1 結論 …………………………………………………41
5-2 建議 …………………………………………………43
參考文獻 …………………………………………………………44
附錄 ………………………………………………………………48
1. S. P. Timoshenko and J. M. Gere, “Theory of elastic stability”, New York, McGraw-Hill, 1961. 2. L. Rayleigh, “The theory of sound”,Dover Publications, New York, vol.1, p.293-294, 1945.3. C. L. Amba-Rao, “Effect of end conditions on the lateral frequencies of uniform straight columns”, Journal of the Acoustical Socirty of America, vol.42, p.900-901, 1967.4. I. Elishakoff and F. Pellegrini, “Exact and effective approximate solution of some divergent type non-conservative problrms”, Journal of Sound and Vibration, vol.114, p.144-148, 1987.5. I. Elishakoff and F. Pellegrini, “Application of Bessel and Lommel functions and undetermined multiplier Galerkin method version for instability of non-uniform column”, Journal of Sound and Vibration, vol.115, p.182-186, 1987.6. M. Eisenberger, “Buckling loads for variable cross-section members with variable axial forces”, International Journal of Solids and Structures, vol.27, p.135-143, 1991.7. I. Elishakoff and O. Rollot, “New closed-form solutions for buckling of a variable stiffness column by mathematica”, Journal of Sound and Vibration, vol.224(2), p.172-182, 1999.8. S. P. Timoshenko, “On the correction for shear of the differential equation for transverse vibrations of prismatic bars”, Phil. Mag. 41, p.744-746, 1921.9. S. P. Timoshenko, “On the transverse vibrations of bars of uniform cross-section ”, Phil. Mag. 43, p.125-131, 1922.10. L. E. Goodman and J. G., “Natural frequencies of continuous beams of uniform span length”, Journal of Applied Mechanics, vol.18, p.218-218, 1951.11. L. E. Goodman, “Flexural vibration in uniform beams according to the Timoshenko theory”, Journal of Applied Mechanics, vol.21, p.202-204, 1954.12. G. R. Cowper, “The shear coefficient in Timoshenko s beam theory”, ASME, Journal of Applied Mechanics, vol.33, p. 335-340, 1966.13. J. N. Goodier, “On the problems of the beam and plate in the theory of elasticity”, Transactions of the Royal Society of Canada, vol.32, p.65-88, 1938.14. A. V. Murthy, “Vibrations of short beams”, American Institute of Aeronautics and Astronautics Journal, vol.8, p.34-38, 1970.15. A. Bokaian, “Natural frequencies of beams under axial compressive loads”, Journal of Sound and Vibration, Vol 126, p.49-65, 198916. N. G. Stephen, “Beam vibration under compressive axial loads upper and lower bound approximation”, Journal of Sound and Vibration, vol. 131(2), p.345-350, 1989.17. N. G. Stephen and M. Levinson, “A second order beam theory”, Journal of Sound and Vibration, vol.67, p.293-305, 1979.18. M. Levinson, “A new rectangular beam theory”, Journal of Sound and Vibration, vol.74, p.81-87, 1981.19. M. Levinson, “Further results of a new beam theory”, Journal of Sound and Vibration,vol.77, p.440-444,1981.20. P. R. Heyliger and J. N. Reddy, “A higher order beam finite element for bending and vibration problems”, Journal of Sound and Vibration, vol.126, p.309-326, 1988.21. B. Aalami, “Waves in prismatic guides of arbitray cross-section”, Journal of Applied Mechanics, vol.40, p.1067-1072, 1973.22. J. B. Kosmatka, “Transverse vibrations of shear-deformable beams using a general higher order theory”, Journal of Sound and Vibration, vol.160, p.259-277, 1993.23. H. Matsunaga, “Buckling instabilities of thick elastic beams subjected to axial stresses”, Computers and Structures, vol.59, p.856-868, 1996.24. H. Matsunaga, “Free vibration and stability of thick elastic beams subjected to axial forces”, Journal of Sound and Vibration, vol.191, p.917-993, 1996.25. H. Matsunaga, “Vibration and buckling of deep beam-columns on two-parameter elastic foundation”, Journal of Sound and Vibration, vol.228(2), p.359-376, 1999.26. L. W. Chen and G. S. Shen, “Vibration and Buckling of initially stressed curved beams”, Journal of Sound and Vibration, vol.215(3), p.511-526, 199827. J. B. Kosmatka, “An improved two-node finite element for stability and natural frequencies of axial-loaded Timoshenko beams”, Computers and Structures, vol.57, p.141-149, 1995. 28. E. J. Barbero, L. A. Godoy and I. G. Raftoyiannis, “Finite elements for three-mode interaction in buckling analysis”, International Journal for Numerical Method in Engineering, vol.39, p.469-488, 1996.29. M. S. Lake and M. M. Mikulas, “Buckling and vibration analysis of a simply supported column with a piecewise constant cross section”, NASA Technical Paper 3090, 1991.30. T. A. Morey, E. Johnson and C. K. Shield, “A simple beam theory for the buckling of symmetric composite beams including interaction of in-plane stresses”, Composites Science and Technology, vol.58, p.1321-1333, 1998.31. C. F. Liu and Y. T. Lee, “Finite element analysis of three-dimensional vibration of thick circular and annular plates”, Journal of Sound and Vibration, vol.233(1), p.63-80, 200032. J. R. Banerjee and F. W. Williams, “The effect of shear deformation on the critical buckling of columns”, Journal of Sound and Vibration, vol.174(5), p.607-616, 1994
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top