跳到主要內容

臺灣博碩士論文加值系統

(18.208.126.232) 您好!臺灣時間:2022/08/12 02:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林憶群
研究生(外文):Yi-Chiung Lin
論文名稱:使用數值分析之影像變換
論文名稱(外文):Image Transformation by Numerical Methods
指導教授:李子才
指導教授(外文):Zi-Cai Li
學位類別:碩士
校院名稱:國立中山大學
系所名稱:應用數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:65
中文關鍵詞:變換影像數值分析
外文關鍵詞:imagetransformation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0


將離散的影像的灰度值看成是小區域上的積分,從而用數值積分方法來處理影像幾何變換,這與傳統的影像變換方式不同。使用數學方法,數值方法與數值分析,特別著重於誤差分析與誤差計算,以及影像轉換後之準確性與品質。這篇論文,重點研究Splitting-integrating(分裂-積分)法,提出了不需用求解非線性方程的新技術,從而使算法特別簡單,方便於使用。在理論上,這篇論文成功地估計了影像灰度間斷時的誤差,突破了以前要影像灰度連續性的假定與限制。
我們用日本著名的女星 Matsushima Nanako(松島菜菜子)的照片作變換,經過圖變換後再還原。將還原圖與原圖比較,計算出平均的灰度差。在splitting-integrating法中,每一個像點所代表的區域分割成N×N個更小區域。平均灰度差在N=8時小於2個灰度,與256灰階度相比較是非常小的。



The splitting-integrating method(SIM) is well suited to the
inverse transformations of digital images and patterns in 2D, but
it encounters some difficulties involving nonlinear solutions for
the forward transformation. New techniques are explored in this
thesis to bypass the nonlinear solution process completely, to
save CPU time, and to be more flexible for general and complicated
transformations T, such as the harmonic model which convert the
original shape of images and patterns to other arbitrary shapes.
In this thesis, the finite element method (FEM) are used to seek
the approximate transformation of the harmonic model. The new
methods of image transformation are applied to human face. To
describe the face boundary, we use the method combining
Lagrange polynomial and Hermite interpolation seeking for the
corresponding grid points besides the fixed ones. The greyness of
images under geometric transformations by the
splitting-integrating method has the error bounds,
O(H)+O(H/N^2) as using the piecewise bilinear interpolations
(u =1), for smooth images, where H(<<1) is mesh resolution
of an optical scanner, and N is the division number of a pixel
split into N^2 sub-pixels. Furthermore, there often occur in
practical applications the discontinuity images whose greyness
jump is a minor portion of the entire image, e.g., the piecewise
continuous images but with the interior and exterior boundary of
greyness jumps, or the continuous pictures accompanied with a
finite number of isolated pixels. For this kind of discontinuous
images, the error bounds are also derived in this thesis to be
$O(H^{ eta})+O(H^{ eta}/N^2), ~ eta
in (0,1]$ as $mu =1$. The image greyness made before was always assumed
to be smooth enough, this error analysis is significant for
geometric image transformations.



1. Introduction
2. The Splitting-Integrating Method and Its Combinations
3. New Improvement of SIM for Image under T
4. Error Analysis
5. Application to Harmonic Model
6. Numerical and Graphical Experiments



1. K.E. Atkinson(1989), An Introduction to Numerical Analysis
(Sec. Ed.), John Wiley & Sons, New York, 1989.
2. J.C. Chiang and R.C. Wang(1999), Data matching with the
Delaunay triangilation, Techical report, Department of Applied
Mathematics National Sun Yat-sen University.
3. E.R. Dougherty and C. R. Giardina(1987), bf Image
Processing-Continuous to Discrete, Vol.I, Geometric, Transform,
and Statistical Methods, Prentice-Hall Inc., Englewood Cliffs,
NJ 07632, 1987.
4. P.J. Davis and Rabinowitz(1984), Methods of Numerical
Integration(Sec. Ed.), Academic Press Inc, San Diego, New York,
1984.
5. G. Farin(1990), Curve and Surfaces for Computer Aided
Geometric Design, A Practical Guide,(Sec. Ed.) Academic Press,
1990.
6. J.D. Foley, A van Dam, S.K. Feiner and J.K. Hughes(1990), bf
Computer Graphics, Principles and Practice (2nd Ed.),
Addison-Wesley, Reading, MA, 1990.
7. O. Faugeras(1993), Three-Dimensional Computer Vision, MIT
Press, Cambridge, MA, 1993.
8. R.C. Gouzaler and P. Wintz(1987), Digital Image Processing
(Sec. Ed.), Addison-Wesley, Reading, MA, 1987.
9. Q.L. Gu, C.Y. Suen. T. D. Bui and Z. C. Li (1991), Font
generation and shape design of character by mathematical models,
Computer Processing of Chinese and Oriental Languages, Vol.5,
pp.347-360, 1991.
10. J. Koenderink(1991), Solid Shape, MIP Press, Cambridge, MA,
1991.
11. Z.C. Li, T.D. Bui, Y.Y. Tang and C.Y. Suen(1989), Computer
transformation of Digital Images and Patterns, World Scientific
Publishing, Singapore, New Jersey, London, 1989.
12. Z. C. Li(1990), Discrete techniques for computer
transformations of digital images and patterns, Pattern
Recognition,Vol.23, No.11, pp.1249-1273, 1990.
13. Z. C. Li, T.D. Bui, C.Y. Suen and Y.Y. Tang(1990a),
Splitting-shooting methods for nonlinear transformations of
digitized patterns, IEEE Pattern Anal. Machine Intell[SCI],
Vol.12, No.7, pp.671-682, 1990.
14. Z. C. Li, Y.Y. Tang, T.D. Bui and C.Y. Suen (1990b), Shap
Transformation models and their applications in pattern
recognition, Int. J. Pattern Recognition and Artificial Intell,
Vol.4, No.1, pp.65-94, 1990.
15. Z. C. Li, Q. L. Gu, C.Y. Suen and T.D. Bui (1990c), A
comparative study of nonlinear shape models for digital
processing and pattern recognition, IEEE, Trans. on Sys., Man
and Cybernetics[SCI], Vol.20, No.4, pp.858-871, 1990.
16. Z. C. Li, C. Y. Suen, T. D. Bui, T. D. Tang and Q. L. Gu(1992a),
Splitting-integrating methods for nonlinear images by inverse
transformations, IEEE, Trans. Pattern Anal. Machine Intell,
Vol.14, pp.678-686, 1992.
17. Z.C. Li, C.Y. Suen, T.D. Bui and Q.L. Gu(1992b), Harmonic
models of shape transformations in digital images and patterns,
Computer Vision, Graphs and Image Processing, Vol. 54,
pp.198-209, 1992.
18. Z.C. Li(1994), Advanced splitting-integrating methods with
high convergence rates for restoring images and patterns, J. of
Scientific Computing, Vol.9, pp.149-172, 1994.
19. Z.C. Li(1995), Splitting-integrating method for inverse
transformation of n-dimensional digital images, Numerical
Algorithms, Vol. 9, pp.181-198, 1995.
20. Z.C. Li(1996a), Analysis of discrete techniques for image
transformation, Numerical Algorithms, Vol.13, 225-263, 1996.
21. Z.C. Li(1996b), Splitting-integrating method for image
transformations T and T-1T, Computers Math. Applic., Vol
32, pp. 32-60,1996.
22. Z.C. Li(1998a), New discrete techniques for 3D
transformation, Computers Math. Applic. Vol. 36, No.4,
pp.77-109, 1998.
23. Z.C. Li(1998b), Discrete techniques for 3-D images and
patterns, IEEE Trans. and Sys. Man Cybern., Vol.28, No.6,
pp.883-894, 1998.
24. Z.C. Li and Z. Bai(1998c), Probabilistic analysis on the
splitting-shooting method for image transformation, Inter. J.
Comp. and Appl. Math., Vol. 94, pp.69-121, 1998.
25. Z.C. Li(1999), Advanced combinations of
splitting-shooting-integrating methods for digit image
transformations, Inter. J. Comp. and Appl. Math., Vol. 107, pp.
147-177, 1999.
26. Z. C. Li(2001), High convergence rates of digital image
transformation by numerical integration using spline functions,
Inter J. Computers and Mathematics with Application, Vol.41, pp.
229-251, 2001.
27. Z. C. Li, Combined Methods for Elliptic Equations with
Singularities, Interfaces and Infinites, Kluwer Academic
Publishers, Boston, Amsterdam, 1998.
28. Z. C. Li and S. Wang(1999), The finite volume method and
application in combinations, Inter. J. Comp. and Appl. Math.,
Vol. 106, pp.21-53, 1999.
29. Z. C. Li and C. C. Chen(2002), Face Transformation by
harmonic models, generating the face boundary, Technical report,
Department of Applied Mathematics, National Sun Yat-sen
University, Taiwan, 2002.
30. D.F. Rogers and J.A. Adames(1990), Mathematical Elements for
Computer Graphs(Sec. Ed.), McGraw Hill. Company, 1990.
31. A.H. Stroud(1971), Approximate Calculation of Multiple
Integrals, Prentice-Hall Inc. 1971.
32. B.Q. Su and D. Y. Liu(1989), Computational Geometry--Curve
and Surface Modelling, Academic Press, Boston, 1989.
33. G. Strang and G.J. Fix(1971), An Analysis of the Finite
Element Method, Prentice-Hall Inc. 1973.
34. W.K. Pratt(1991), Digital Image Processing(Sec. Ed.), John
Wiley & Sons Inc., 1991.
35. M.C. Yang and J.Y. Chiang(1999), The application of Delaunay
triangulation to face recognition, Technical report, Department
of Applied Mathematics National Sun Yat-sen University.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top