|
[1] M.S. Ashbaugh and R.D. Benguria, Best constant for the ratios of the firsttwo eigenvalues of one-dimensional Schrodinger operator with positive potentials,Proc. Amer. Math. Soc. 99 (1987), 598-599.[2] M.S. Ashbaugh and R.D. Benguria, Optimal bounds for ratios of eigenvaluesof one-dimensional Schrodinger operators with Dirichlet boundary conditionsand positive potentials, Comm. Math. Phys. 124 (1989) 403-415.[3] M.S. Ashbaugh and R.D. Benguria, Eigenvalue ratios for Sturm-Liouvilleoperators, J. Di_. Eqns. 103 (1993) 205-219.[4] G. Birkho_ and G.C. Rota, Ordinary Di_erential Equations, 4th ed (1989)Wiley, New York.[5] M.J. Huang, On the eigenvalue ratios for vibrating strings, Proc. Amer.Math. Soc. 127 (1999) 1805-1813.[6] Y.L. Huang and C.K. Law, Eigenvalue ratios for the regular Sturm-Liouvillesystem, Proc. Amer. Math. Soc. 124 (1996) 1427-1436.[7] Y.L. Huang, Eigenvalue ratios for the regular Sturm-Liouville system (unpublishedMaster thesis, National Sun Yat-sen University, Kaohsiung, Taiwan,1994).[8] Q. Kong and A. Zettl, Eigenvalues of regular Sturm-Liouville problems, J.Di_. Eqns. 131 (1996) 1-19.[9] R. Lavine, The eigenvalue gap for one-dimensional convex potentials, Proc.Amer. Math. Soc. 121 (1994) 815-821.
|