跳到主要內容

臺灣博碩士論文加值系統

(3.235.140.84) 您好!臺灣時間:2022/08/15 02:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊昇府
研究生(外文):Sheng-Fu Yang
論文名稱:以Cu/Ce觸媒應用於氣相氨氧化及其反應動力之研究
論文名稱(外文):The Study of Catalytic Oxidation of Ammonia in an Air Stream over Cu/Ce Catalyst
指導教授:樓基中樓基中引用關係
指導教授(外文):Jie-Chung Lou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:226
中文關鍵詞:反應動力選擇性觸媒氧化Cu/Ce觸媒氨氧化共沉澱法
外文關鍵詞:SCOAmmoniaAmmonia OxidationCoprecipitationReaction MechanismCu/Ce Catalyst
相關次數:
  • 被引用被引用:20
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:82
  • 收藏至我的研究室書目清單書目收藏:0
氨是一種有價值的化學產品,它常被用來製造肥料、合成纖維、合成塑膠以及炸藥。還有其它工廠像造紙、紡織、照相、電子等也都會使用到氨。氨也是一種典型的污染物,它常從工業製程、密集農業地區及養殖牲畜的養殖場排出。氨具有腐蝕性會造成灼傷,而且對支氣管具有長期的影響性。
本研究以選擇性觸媒氧化法(Selective Catalytic Oxidation,SCO)處理氨氣(NH3)及探討其氧化效能及反應動力。實驗操作參數範圍:使用的觸媒為Cu/Ce系列自製觸媒,操作溫度介於150至500 ℃,進流氨濃度介於500 ppm至1000 ppm,進流氧濃度介於4%至20%,及溼度1%至20%(607 ppm至12136 ppm)。
第一階段初步實驗中,是從自製觸媒中篩選出一種對氨氣最具活性及對氮氣選擇性高的觸媒。本實驗配製的觸媒共有三類,包括Cu/La/Ce(莫耳比:8/1/1、7/1/2、7/2/1、6/1/3、6/2/2與6/3/1)、Cu/La(莫耳比:6/4、7/3、8/2與9/1)、Cu/Ce(莫耳比6/4、7/3、8/2與9/1)等,以上一系列觸媒共計14種。結果顯示莫耳比為6:4的Cu/Ce觸媒對氨氣氧化最具活性及高選擇性。
第二階段是以莫耳比為6:4的Cu/Ce觸媒探討操作參數對氨氣轉化效率之影響。操作參數為不同進流氨濃度、進流氧濃度、溼度、操作溫度與空間流速。氨氣的轉化率增加是隨進流溫度的上升、氧氣濃度的增加與停留時間的增加,但是氨氣的轉化率減少是隨氨氣進流濃度、空間流速與溼度的增加。
第三階段同樣是探討以莫耳比為6:4的Cu/Ce觸媒操作時間對活性衰退之影響。在固定氨氣進流濃度、氧氣濃度與空間流速下,連續操作30小時。實驗的結果發現Cu/Ce觸媒具有不錯的穩定性,而且進一步測定X-光繞射分析儀(XRD)、Scanning Electron Microscopy(SEM)及Elemental Analyzer(EA)。
反應動力計算是以微分法來探討莫耳比為6:4的Cu/Ce觸媒焚化處理氨的最佳動力模式。結果顯示在引用的三個模式中,以Mars-Van Krevelen模式較適用描述本反應行為。並推導出出氨(NH3)之一階化學反應動力及破壞去除效率方程式,而且預測之破壞去除效率與實驗之破壞去除效率頗為吻合。在操作參數(氨進流濃度、反應溫度、氧進流濃度)對反應速率的影響方面,經由實驗可知上述三種操作參數對反應速率皆有一定的影響性,氨進流濃度越大、反應溫度越高、氧進流濃度越高,則所得之反應速率越大。
Abstract
Ammonia (NH3) is one of valuable chemicals which is commonly used in manufacturing the fertilizer, synthetic fiber, synthetic plastics, and dynamites, and is used in the factories such as papermaking, textile mill, camera and electrical. NH3 is also a typical pollutant which is found to be emitted from industrial processes, agriculture areas and livestock farm. It causes burn damage due to the corrosion and has a long-term impact on human bronchus.

This study was to investigate the performance and kinetics in oxidation of ammonia by using a method of selective catalytic oxidation (denoted by SCO) over a series catalysts of Cu/Ce . The major parameters were performed at the following conditions: initial concentration NH3 of influent in ranging from 500 ppm to 1000 ppm, temperatures ranging from 150℃ to 500℃, oxygen content in inlet stream in ranging from 4%to 20%and humidity in ranging from 1%to 20%(or an absolute humidity of 607 ppm-12136 ppm).

In the first stage experiments, the purpose was to select a best catalyst, which had the great activity and highest selectivity on nitrogen. The catalysts used in this work were prepared into three types in the following: Cu/La/Ce (molar ratio: 8/1/1, 7/1/2, 7/2/1, 6/1/3, 6/2/2 and 6/3/1), Cu/La (molar ratio: 6/4, 7/3, 8/2 and 9/1) and Cu/Ce (molar ratio: 6/4, 7/3, 8/2 and 9/1); total numbers of catalysts were 14. Test results showed the molar ratio 6:4 of Cu/Ce catalyst was found to have the best activity and selectivity to convert NH3 in this work.

The second stage experiments were carried to investigate the effect of parameters on conversion of NH3 over a Cu/Ce catalyst of molar ratio 6:4. The conversion of NH3 in process of SCO increased with operation conditions such as the going up of temperature, and the increasing both of oxygen content and of residence time. The lower conversion of NH3 was achieved by an increasing on initial concentration of NH3, space velocity and humidity.

The third stage experiments were conducted to investigate the effect of operation period on deactivation of NH3 over the above catalyst. At constant initial concentration of NH3, oxygen content and space velocity for 30 hr continuously, we found Cu/Ce catalyst had an excellent stability in conversion of NH3. Further tests by XRD, SEM and EA were determined.
The kinetics of SCO over a Cu/Ce catalyst of molar ratio 6:4 in oxidation of NH3, using differential method, was found that a pseudo-first order reaction could be described by Mars-Van Krevelend model. An equation of destruction efficiency in terms of NH3 was obtained, and a good fitting was got between the predicted and the experimental values.
第一章 諸論1-1
1-1前言 1-1
1-2研究目的1-2
1-3研究內容與架構1-3
第二章 文獻回顧 2-1
2-1氨(Ammonia)的來源及危害 2-2
2-1-1氨(Ammonia)的主要來源 2-2
2-1-2氨(Ammonia)的危害性 2-4
2-2氨(Ammonia)的特性 2-6
2-2-1氨(Ammonia)對人體的危害2-7
2-3氨(Ammonia)的控制技術 2-9
2-3-1氨(Ammonia)處理技術分類………………………… 2-10
2-3-2氨(Ammonia)處理技術特性及分類…………………… 2-11
2-4觸媒操作參數之探討………………………………………... 2-29
2-4-1觸媒焚化效率計算………………………………………. 2-29
2-4-2操作參數的影響因子……………………………………. 2-31
2-4-3觸媒活性衰退……………………………………………. 2-37
頁數
2-5 觸媒焚化反應動力之探討…………………………………. 2-42
2-5-1柱流式反應器基礎理論………………………………… 2-45
2-5-2微分型反應器…………………………………………… 2-47
2-5-3觸媒異相反應模式……………………………………… 2-48
第三章研究方與法實驗設備3-1
3-1研究方法3-1
3-1-1實驗規劃3-1
3-1-2觸媒製備及性質分析3-2
3-1-3實驗步驟與方法…………………………………………... 3-8
3-2實驗設備3-19
3-2-1實驗系統裝置3-19
3-2-2試藥與氣體3-25
3-2-3主要儀器原理 3-28
3-3預備實驗3-34
3-3-1檢量線製作3-34
3-3-2質量流量計校正3-34
第四章 結果與討論4-1
4-1觸媒效應4-1
4-2氨觸媒焚化之操作參數探討….4-26
4-3氨對觸媒焚化效能活性衰退的探討…………………………4-41
4-3-1觸媒衰退現象…………………………………………….4-41
4-3-2 BET分析…………………………………………………4-44
4-3-3 X射線繞射(XRD)分析…………………………………..4-46
4-3-4掃描式電子顯微鏡(SEM)分析…………………………..4-48
4-3-5表面元素分析(EDS)……………………………………..4-50
4-3-6元素分析(EA)…………………………………………….4-53
頁數
4-4觸媒焚化反應動力模式探討4-54
4-5積分反應實驗法之反應動力分析結果4-75
4-5-1反應動力常數結果……………………………………….4-75
4-6操作參數(氨濃度、溫度、氧濃度)對反應速率之影響4-84
4-6-1進流氨濃度對反應速率之影響4-84
4-6-2不同反應溫度對反應速率之影響4-84
4-6-3氧濃度對反應速率之影響4-85
第五章 結論與建議5-1
5-1結論……………………………………………………………..5-1
5-2建議……………………………………………………………..5-3
第六章 參考文獻6-1
附錄A 儀器原理
A-1 BET比表面積分析儀A-1
A-2 XRD(X-ray射線繞射分析儀)A-4
A-3 掃描式電子顯微鏡分析A-7
A-5 元素分析儀A-9
附錄B R.H.與A.H.於室溫下(25℃)之換算表…………….…..B-1
第六章 參考文獻1.江彥雄, 「空氣污染控制技術」, P. 195∼215, 1983年8月。2.江彥雄, 「有害物質焚化技術」,P.459∼466, 1983年8月。3.吳榮宗著, 「工業觸媒概論」,國興出版社, 1989年。4.Prasad, R., Kennedy, L. and Ruckenstein, E., “Catalytic Combustion”, Catal. Rev. Eng., Vol. 26, No.1, pp.1-58, 1984.5.John P.Collins and J.Douglas Way, “Catalytic Decomposition of Ammonia in a Membrane Reactor”, Journal of Membrane Science, Vol. 96, pp.259 -274, 1994.6.李秉傑,邱宏明,王亦凱,「非均勻系催化原理與運用」渤海堂文化公司印行,二月, 1988。7.M. Amblard, R. Burch and B.W.L. Southward, “A Study of The Mechanism of Selective Conversion of Ammonia to Nitrogen on Ni/γ-Al2O3 under Strongly Oxidising Conditions”, Catal. Today, Vol. 59, pp.365-371, 2000.8.Keiji Hashimoto and Naoji Toukai, “Decomposition of Ammonia over a Catalyst Consisting of Ruthenium Metal and Cerium Oxides Supported on Y-Form Zeolite”, J. Mol. Catal. A Chem. 138, pp.171-178, 2000.9.陳雄文,「空氣污染防治費收支、保管及運用」,空氣污染防治研討會書面資料,pp.9-21,十月,1995。10.王佑靖、邱宗文、繆佐君、余秉量,「化工場VOCs廢氣收集處理系統設計與實例」,工業污染訪防治,第67期,七月,pp.85∼95,1998。11.臭氣處理程序設計評估技術,工研院化工所,1991。12.氣狀污染物控制設備之評估與選用,中技社工業污染防治手冊。13.Robert, J.F., et al, “Environmental Catalysts”, C&EN, September 7, pp.34-44, 1992.14.Panagiotis Papaefthimiou and Xenophon E.Verykios, ”Combustion of nonhalgenated volatile organic compounds over group VⅢ metal catalysts”, Applied Catalysis B:Environmental, Vol.13, No.3-4, pp.175-184, 1997.15.陳敏、羅夢飛、袁賢鑫,「載體對附載鈀催化劑的CO氧化活性的影響」,環境科學學報,第18卷,第四期,pp.421-424,1998。16.Arai, H., Yamada, T., Eguchi, K. and Seiyama, T., “Catalytic Combustion of Methane over Various Perovskite-type Oxides”, Applied Catalysis, Vol. 26, pp.265-276, 1986.17.James J. Spivey, “Complete Catalytic Oxidation of Volatile Organics”, Industrial Engineering Chemical Research, Vol.26, No.11, pp.2165-2180, 1987.18.L. Lietti, G. Ramis, G. Busca, F. Bregani and P. Forzatti, ”Characterization and Reactivity of MoO3/SiO2 Catalysts in the Selective Catalytic Oxidation of Ammonia to N2”, Catalysis Today, Vol.61, pp.187-195, 2000.19.G. Groppi, L. Lietti, E. Tronconi and P. Forzatti, “Catalytic Combustion of Gasified Biomasses over Mn-substituted hexaaluminates for Gas Turbine Applications”, Catalysis Today, Vol.45, pp.159-165, 1998.20.Lu Gang, B.G. Anderson, J. van Grondelle and R.A. van Santen, ”NH3 Oxidation to Nitrogen and Water at Low Temperatures Using Supported Transition Metal Catalysts”, Catalysis Today, Vol.61, pp.179-185, 2000.21.Yuejin Li and John N. Armor, “Selective NH3 Oxidation to N2 in a Wet Stream”, Applied Catalysis B: Environmental, Vol.13, pp.131-139, 1997.22.T. Curtin, F. O’ Regan, C. Deconinck, N. Knuttle and B.K. Hodnett, ”The Catalytic Oxidation of Ammonia: Influence of Water and Sulfur on Selectivity to Nitrogen over Promoted Copper Oxide/Alumina Catalysts”, Catalysis Today, Vol.55, pp.189-195, 2000.23.Heyes, C.J., Irwin, J.G., Johnson, H.A. and Moss, R.L., “The Catalytic Oxidation of Organic Air Pollutants. PartⅠ. Single Metal Oxide Catalysts”, J. Chem. Tech. Biotechnology, Vol.32, pp.1025-1033, 1982.24.江惠中,「有機廢氣觸媒焚化及廢熱回收」,有機廢氣觸媒焚化處理技術研討會,p.4-1∼4-25,三月,1989。25.呂立德,「化工動力與化工熱力」,立功出版社,六月,1991。26.黃柳青譯,「化工動力學與反應設計下冊」,科技出版社,p.120-123,1993。27.Gangwal, S.K., Mullins, M.E. Spivey, j.j. and Caffrey, P.R., “Kinetics and Selectivity of Deep Catalytic Oxidation of n-Hexane and Benzene”, Applied Catalysis, Vol.36, pp.231-247, 1988.28.Spivey James J., Agarwal S.K. and David Tevault E., “Kinetics of the Catalytic Destruction of Cyanogen Chloride”, Applied Catalysis B: Environmental, Vol.5, pp.389-403, 1995.29.Chang, C. and Weng, H., “Deep Oxidation of Toluene on Perovskite Catalysts”, Ind. Eng. Chem. Res., Vol.32, pp.2930-2933, 1993.30.王大中、顧洋、李嘉平,「一甲胺氣體氧化反應之研究」,第七屆空氣污染控制技術研討會,pp.595-614,九月,1990。31.邱創汎、王耀銘、張坦卿,“空氣污染生物技術處理本土化之評析”工業污染防治,第58期,四月,pp.111∼123,1996。32.環保署譯,「惡臭防制技術參考手冊(Ⅰ)」,pp.56,六月,1988。33.王清輝,“銅-鉬氧化物擔體觸媒應用於氧化分解二硫化二甲基之研究”國立成功大學化學工程研究所博士論文,六月,1998。34.Chi-Sheng Wu Jeffrey and Tai-Yuan Chang, “VOC Deep Oxidation over Catalysts Using Hydrophobic Supports”, Catalysis Today, Vol.44, pp.111-118, 1998.35.D. Pope, D.S. Walker and R.L. Moss, “Evaluation of Cobalt Oxide Catalysts for the Oxidation of Low Concentration of Organic Compounds”, Atmospheric Environment, Vol.10, NO.6, pp.951-956, 1976.36.蔡文田、邱三、張慶源,「含1,1,1-三氯乙烷蒸氣之觸媒焚化處理」,第十二屆空氣污染控制技術研討會論文集,pp.680-685,1995。37.J. C. Lou and S.S. Lee, ”Destruction of Trichloromethane with Catalytic Oxidation”, Applied Catalysis B: Environment, Vol.12, pp.111-123, 1997.38.A. Wollner, F. Lange, H. Schmelz and H. Knozinger, “Characterization of Mixed Copper-Manganese Oxides Supported on Titania Catalysts for Selective Oxidation of Ammonia”, Applied Catalysis A: General, Vol.94, pp.181-203, 1993.39.J. C. Lou and C. L. Chen, “Destruction of Butanone and Toluene with Catalytic Incineration”, Hazardous Waste & Hazardous Materials, Vol.12, pp.37-49, 1995.40.樓基中,李學賢,「以催化介質氧化三氯甲烷之研究」,中國環境工程學刊,第五卷,第四期,pp.301-307,1995。41.Wahab Mojtahedi and Javad Abbasian, “Catalytic Decomposition of Ammonia in a Fuel Gas at High Temperature and Pressure”, Fuel, Vol.74, pp.1698-1703, 1995.42.柯子星,「以Pt/γ-Al2O3觸媒焚化處理甲基異丁酮之研究」,國立成功大學環境工程研究所碩士論文,六月,1999。43.T.K. Tseng and H. Chu, “The Kinetics of Catalytic Incineration of Styrene over a MnO/Fe2O3 Catalyst”, The Science of the Total Environment, Vol.275, pp.83-93, 2001.44.H. Chu and K. Horng, “The Kinetics of Catalytic Incineration of CH3SH and (CH3)2S over a Pt/γ-Al2O3 Catalyst”, The Science of the Total Environment, Vol.209, pp.149-156, 1998.45.許漢軒,「以Mn2O3/γ-Al2O3觸媒焚化處理三氯乙烯之研究」,國立成功大學環境工程研究所碩士論文,六月,2000。46.Hsin Chu, Guang Huei Hao and Ting Ke Tseng, “The Kinetics of Catalytic Incineration of Dimethyl Sulfide and Dimethyl Disulfide over an MnO/Fe2O3 Catalyst”, J. Air & Waste Manage. Assoc., Vol.51, pp.574-581, 2001.47.何俊德,「以Mn3O4/γ-Al2O3觸媒焚化處理二氯乙烷之研究」,國立成功大學環境工程研究所碩士論文,六月,2001。48.Luca Lietti, Cristiano Ramella, Gianpiero Groppi and Pio Forzatti, ”Oxidation of NH3 and NOx Formation During the Catalytic Combustion of Gasified Biomasses Fuels over Mn-Hexaaluminate and Alumina-Supported Pd Catalysts”, Applied Catalysis B: Environment, Vol.21, pp.89-101, 1999.49.R. Ukropec, B.F.M Kuster, J.C. Schouten and R.A. van Santen, “Low Temperature Oxidation of Ammonia to Nitrogen in Liquid Phase”, Applied Catalysis B: Environment, Vol.23, pp.45-57, 1999.50.Hsin. Chu, Yiing-Yuan Chiou, Kuen-How Horng and Ting-Ke Tseng, “Catalytic Incineration of C2H5SH and It’s Mixture with CH3SH over a Pt/γ-Al2O3 Catalyst”, Journal of Environmental Engineering, pp.438-442, 2001.51.H. Chu, W.T. Lee, K.H. Horng and T.K. Tseng, “The Catalytic Incineration of (CH3)2S and It’s Mixture with CH3SH over a Pt/γ-Al2O3 Catalyst”, Journal of Hazardous Materials B, Vol.82, pp.43-53, 2001.52.H. Chu and W.T. Lee, “The Effect of Sulfur Poisoning of Dimethyl Disulfide on the Catalytic Incineration over a Pt/γ-Al2O3 Catalyst”, The Science of the Total Environment, Vol.209, pp.217-224, 1998.53.Krzysztof Schmidt-Szalowski, Krzysztof Krawczyk and Jan Petryk, “The Properties of Cobalt Oxide Catalyst for Ammonia Oxidation”, Applied Catalysis A: General, Vol.175, pp.147-157, 1998.54.N.M. Sammes and B.C.H. Steele, “The Catalytic Oxidation of Ammonia in a Ceramic Electrochemical Reactor, Using Metal Oxide Electrodes”, Journal of Catalysis, Vol.145, pp.187-193, 1994.55.Junji Taguchi and Toshio Okuhara, “Selective Oxidative Decomposition of Ammonia in Neutral Water to Nitrogen over Titania-Supported Platinum or Palladium Catalyst”, Applied Catalysis A: General, Vol.194-195, pp.89-97, 2000.56.Ola Nilsen, Arne Kjekshus and Helmer Fjellvag, “Reconstruction and Loss of Platinum Catalyst during Oxidation of Ammonia”, Applied Catalysis A: General, Vol.207, pp.43-54, 2001.57.Lu Gang, J. van Grondelle, B.G. Anderson and R.A. van Santen, “Selective Low Temperature NH3 Oxidation to N2 on Copper-Based Catalysts”, Journal of Catalysis, Vol.186, pp.100-109, 1999.58.C.G. Vayenas and R.D. Farr, “Cogeneration of Electric Energy and Nitric Oxide”, Science, Vol.208, 1980.59.G. Ramis, Li Yi and G. Busca, “Ammonia Activation over Catalysts for the Selective Catalytic Reduction of NOx and the Selective Catalytic Oxidation of NH3. An FT-IR Study”, Catalysis Today, Vol.28, pp.373-380, 1996.60.陳全祿,「以鉑觸媒焚化處理揮發性有機物反應動力之研究」,國立中山大學環境工程研究所碩士論文,六月,1992。61.李學賢,「以觸媒氧化含氯碳氫化合物之研究」,國立中山大學環境工程研究所碩士論文,六月,1993。62.蔡金進,「以觸媒氧化含氯烯類化合物之研究」,國立中山大學環境工程研究所碩士論文,六月,1994。63.謝翰坤,「以觸媒焚化處理1,1,1-三氯乙烷之研究」,國立中山大學環境工程研究所碩士論文,六月,1996。64.林麟易,「以觸媒焚化處理1,3-丁二烯之研究」,國立中山大學環境工程研究所碩士論文,六月,1997。65.盧裕倉,「以觸媒氧化法處理含揮發性有機物煙道氣之研究」,國立中山大學環境工程研究所碩士論文,六月,1998。66.黃齡萱,「酸改質對金屬氧化物觸媒De-NOx效能影響之研究」,國立中山大學環境工程研究所碩士論文,六月,2001。67.顏伯宗,「添加Mn/γ-Al2O3於觸媒濕式氧化程序處理2,4-二氯酚水溶液之研究」,國立中山大學環境工程研究所碩士論文,六月,2001。68.蔡凱紋,「Pd/CeO2/Al2O3做為觸媒轉化氣中觸媒之研究」,碩士論文,國立中央大學化學工程研究所,1997。69.Tung Li Huang, Keith R. Cliffe and Jordan M. Macinnes, “The Removal of Ammonia from Water by a Hydrophobic Catalyst”, Environ. Sci. Technol., Vol.34, pp.4804-4809, 2000.70.J.J.P. Biermann, F.J.J.G. Janssen and J.R.H. Ross, “Nitrogen Containing Species as Intermediates in the Oxidation of Ammonia over Silica Supported Molybdena Catalysts”, Applied Catalysis A: General, Vol.86, pp.165-179, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top