跳到主要內容

臺灣博碩士論文加值系統

(44.210.21.70) 您好!臺灣時間:2022/08/11 16:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林家驊
研究生(外文):Chia-Hua Lin
論文名稱:添加Cu/La/Ce觸媒於濕式氧化程序處理含氨水溶液之研究
論文名稱(外文):Catalytic Wet Air Oxidation of Ammonia Solutions with Addition of Cu/La/Ce
指導教授:樓基中樓基中引用關係
指導教授(外文):Chi-Chung Lou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:172
中文關鍵詞:氨氮觸媒濕式氧化共沉澱法Cu/La/Ce觸媒觸媒
外文關鍵詞:Co-precipitationCu/La/Ce composite oxideNH3-NCatalystCatalytic Wet Air Oxidation (CWAO)ammonia
相關次數:
  • 被引用被引用:15
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本研究是以濕式氧化法(Wet Air Oxidation,WAO)配合添加觸媒探討水中氨氮(NH3-N:400 mg/L至1000 mg/L)的去除效能及反應動力。一系列實驗於半批次與連續式操作系統下進行氨氮去除,實驗條件包括溫度、壓力、濃度及pH值。
在半批次式系統之WAO實驗中,操作條件為:NH3-N初始濃度400mg/L,溫度(423至503 K),總壓力(4.0 MPa)及pH(12.0)。結果顯示在503K,反應時間180分鐘之NH3總去除率僅達32.7 %,但添加莫耳比7:2:1的觸媒後,NH3總去除率可提昇至95.1%以上。在半批次實驗中並將以此基本數據進一步探討去除動力學的基本特徵。
在連續式WAO實驗中,處理條件為NH3-N入流濃度為400mg/L,pH=12.0,溫度503 K、總壓力2.0 MPa及空間流速4.5 hr-1(平均停留時間大約為14 min),NH3總去除率僅達6.5%,但添加Cu/La/Ce = 7:2:1觸媒的濕式氧化反應(Catalytic Wet Air Oxidation,CWAO)其NH3去除率可達72.3%以上,當空間流速降低至1.5 hr-1(平均停留時間大約為40min),CWAO之NH3去除率更可達91%。在相同的處理條件下(pH=12.0,溫度503 K、總壓力2.0 MPa及空間流速1.5 hr-1)提高NH3-N入流濃度至600、800、1000 mg/L時,NH3總去除率分別為85、75、69%。由此結果可以知道反應物入流濃度亦為影響反應總去除效率之因子,反應入流濃度越高,則反應去除效率越低。
利用半衰期t1/2做本實驗半批次系統反應動力之確認,結果近似零階反應,其k值在反應溫度為503K、473K及423K時分別為10.121、9.124及6.570;以NH3去除率估算活化能值為9.747 kJ mol-1。由實驗數據可知反應中加入Cu/La/Ce=7:2:1觸媒,明顯地能使反應更易進行。
ABSRACT
This study was to investigate the removal efficiency and kinetics in oxidation of ammonia solutions (NH3-N) in ranging from 400 mg/L to 1000 mg/L by adding Cu/La/Ce catalyst in process of Wet Air Oxidation (denoted by WAO). All experiments were conducted in semi-batch and continuous reactors in series. The major parameters included temperature, pressure, concentration and pH.

In the semi-batch type of WAO experiments, the major parameters were performed at the following conditions: an initial concentration NH3-N of 400 mg/L, temperatures ranging from 423 K to 503 K, a total pressure of 4.0 Mpa, and a pH of 12.0. A removal efficiency of 32.7%was obtained in WAO process at 503 K for180 min, but it could be significantly promote to 95.1% after adding a catalyst of molar ratio 7:2:1.The kinetics of WAO with this catalyst in oxidation of NH3-N solutions, using a test of half-life, was developed nearly to a zero order. The reaction constants were 10.12 KJ/mol, 9.12 KJ/mol, and 6.57 KJ/mol at 503 K, 473 K and 423 K.
In the continuous type of WAO experiments, the major parameters were performed at the following conditions: an initial concentration NH3-N of 400 mg/L, a temperature of 503 K, a total pressure of 2.0 Mpa, a pH of 12.0 and a liquid space velocity of 4.5 hr-1 (averagelyresidence time 14 min) . A removal efficiency of NH3-N of 6.5 % only was achieved in WAO process for a space velocity of 4.5 hr-1 (averagely residence time 14 min) , but after adding a catalyst of molar ratio 7:2:1 it increased to 72.3 % for a same residence time and a better efficiency of above 91 % was found for 1.5 hr-1 (averagely residence time 40 min) . For increasing the initial concentration of NH3-N into 600 mg/L, 800 mg/L, and 1000 mg/L the removal efficiency of NH3-N decreased with 85 %,75 % and 69 % for 1.5 hr-1 . Thus, the initial concentration of NH3-N in influent inhibits the removal efficiency in the oxidation process. The higher initial concentration the lower removal efficiency.
目 錄
頁數
謝誌I
中文摘要II
英文摘要IV
目錄VI
表目錄XI
圖目錄XII
符號說明XVI
委託分析項目.XVIII
第一章 前言1-1
1-1研究緣起1-1
1-2研究目的1-2
1-3研究內容1-2
第二章 文獻回顧2-1
2-1氨2-1
2-1-1氨的簡介2-1
2-1-2氨的來源2-3
2-1-3氨的毒性2-4
2-1-4氨的去除2-6
2-2觸媒濕式氧化法2-8
2-2-1濕式氧化原理2-8
2-2-2濕式氧化法的發展及應用2-8
2-2-3濕式氧化法特性2-12
2-2-4濕式氧化法之動力模式2-14
2-2-5濕式氧化法之反應步驟2-15
頁數
2-2-6濕式氧化法的產物2-17
2-2-7濕式氧化法的操作因子2-19
2-3觸媒2-23
2-3-1活性金屬2-23
2-3-2觸媒製備方法概述2-24
第三章實驗設備與研究方法3-1
3-1觸媒製備及物性分析3-1
3-1-1觸媒製備裝置3-1
3-1-2觸媒製備程序3-1
3-1-3觸媒物性鑑定3-6
3-2實驗設備3-10
3-2-1半批次設備及功能說明3-10
3-2-2連續式設備及功能說明3-13
3-3實驗操作步驟3-15
3-3-1半批次式反應操作程序3-15
3-3-2連續式反應操作程序3-16
3-4實驗藥品與儀器3-17
3-4-1實驗水樣3-17
3-4-2實驗氣體及藥品3-17
3-4-3實驗儀器3-18
3-5實驗方法3-20
3-5-1實驗設計3-20
3-4-2實驗分析3-20
3-4-3實驗分析項目及方法3-26
第四章 結果與討論4-1
4-1前導實驗4-1
頁數
4-1-1氧分壓對WAO處理NH3去除率之影響4-1
4-1-2觸媒篩選4-3
4-2半批次式觸媒濕式氧化處理程序4-5
4-2-1添加觸媒對去除率之影響4-5
4-2-2初始pH值對去除率之影響4-7
4-2-3 pH值之變化4-9
4-2-4反應溫度對去除率之影響4-10
4-2-5反應起始濃度對去除效率之影響4-11
4-2-6氨之濕式氧化反應動力式推導4-12
4-3連續式觸媒濕式氧化程序4-20
4-3-1不同氧分壓下NH3去除率4-20
4-3-2不同氧分壓下NO3-、NO2-選擇率4-21
4-3-3不同溫度下NH3去除率4-22
4-3-4不同溫度下NO3-、NO2-選擇率4-22
4-3-5不同起始濃度4-25
4-3-6不同起始pH值4-26
4-4觸媒活性衰退試驗4-27
4-5觸媒性質之探討4-28
4-5-1元素分析(EA)4-28
4-5-2感應耦合電漿質譜分析儀(ICP-MS)4-29
4-5-3比表面積和平均孔徑(BET)4-30
4-5-4掃描式電子顯微鏡分析(SEM)4-31
4-5-5表面元素分析(EDS)4-33
4-5-6 X射線繞設分析(XRD)4-35
第五章 結論與建議5-1
5-1結論5-1
頁數
5-2建議5-1
第六章 參考文獻6-1
附錄A 儀器原理A-1
A-1 BET比表面積分析儀A-1
A-2 XRD(X-ray射線繞射分析儀)A-4
A-3 掃描式電子顯微鏡分析A-7
A-4 元素分析儀A-9
附錄B 校正曲線(Calibration curve)B-1
B-1 N2O (GC)B-1
B-2 NH4+(MERCK VEGA 400)B-2
B-3 NO3-(MERCK VEGA 400)B-3
B-4 NO2-(MERCK VEGA 400)B-4
附錄C 水蒸氣壓表C-1
附錄D 觸媒元素分析數據D-1
附錄E 觸媒金屬溶出數據E-1
附錄F X-ray繞射數據及圖譜F-1
F-1 Cu/La/Ce(un-used)圖譜F-1
F-2 Cu/La/Ce(used)圖譜F-2
附錄G MERCK VEGA 400 藥品說明G-1
G-1 Merck Kit 1.14752 G-1
頁數
G-2 Merck Kit 1.14776 G-5
G-3 Merck Kit 1.14773 G-9
附錄H 熱電偶特性與使用環境的適應性H-1
附錄I 個人簡歷I-1
表目錄
頁數
表2-1 氨之物理及化學特性2-2
表2-2 氨的合成方法2-2
表2-3 燃燒來源氨的釋放量2-3
表2-4 家庭熱源氨的產生量2-4
表2-5 氨之生物毒性2-6
表2-6 反應條件下水蒸氣壓計算表2-19
表2-7 常見存在於Perovskite型氧化物中之陽離子2-28
表3-1 濕式氧化處理程序操作條件直交表3-24
表4-1 Cu/La/Ce各種比例觸媒篩選4-3
表4-2 Cu/La/Ce觸媒鍛燒溫度篩選4-4
表4-3 不同溫度下之反應階數(n)4-17
表4-4 不同溫度下之反應速率常數(k)4-17
表4-5 處理氨水溶液濕式氧化程序之活化能及Arrhenius Frequency (Temp. =423~503 K,Pt=4.0 MPa、pH0=12.0) 4-19
表4-6 觸媒表面之元素分析結果4-28
表4-7 連續性測試金屬溶出結果4-29
表4-8 觸媒之表面性質4-30
圖目錄
頁數
圖1-1 研究流程圖1-4
圖2-1 氨之分子構造式2-3
圖2-2 美國Zimpro公司濕式氧化流程圖2-11
圖2-3 APO反應器操作過程典型的溫度/壓力變化圖濕式氧化
路徑流程圖2-12
圖2-4 濕式氧化法路徑流程圖2-14
圖2-5 波洛斯凱特型金屬氧化物結構2-27
圖3-1 觸媒製備之沉澱裝置3-3
圖3-2 製備觸媒燒結裝置示意圖3-4
圖3-3 觸媒製備流程圖3-5
圖3-4 半批次反應器設備圖3-12
圖3-4 連續式反應器設備圖3-14
圖4-1 氧分壓對NH3去除率之影響(Initial Conc. of NH3=400
mg/L,Temp. =503K,pH0=12.0,PO2=1 ~ 5 MPa) 4-2
圖4-2 添加觸媒對NH3去除率之影響(Initial Conc. of NH3=400
mg/L, Pt=4.0 MPa,pH0=12.0,Temp. =503~423 K)4-6
圖4-3 初始pH值對NH3去除率之影響(Initial Conc. of NH3=400 mg/L, Pt=4.0 MPa,Temp. =503 K) 4-8
圖4-4 反應過程中pH值之變化(Initial Conc. Of NH3=400 mg/L,Pt=4.0 MPa,Temp. =503 K) 4-9
頁數
圖4-5 溫度對NH3去除率之影響(Conc. =400 mg/L, Pt=4.0
MPa,pH0=12.0,Temp.=423 ~503K)4-10
圖4-6 反應起始濃度對NH3去除率之影響(Conc. =400 ~ 1000
mg/L, Pt=4.0 MPa,pH0=12.0,Temp.=503K) 4-11
圖4-7 零階反應之測試-log CAo對log t1/2(Conc. =400 ~ 1000 mg/L, Pt=4.0 MPa,pH0=12.0,Temp.=503K) 4-14
圖4-8 零階反應之測試-log CAo對log t1/2(Conc. =400 ~ 1000 mg/L, Pt=4.0 MPa,pH0=12.0,Temp.=473K) 4-15
圖4-9 零階反應之測試-log CAo對log t1/2(Conc. =400 ~ 1000 mg/L, Pt=4.0 MPa,pH0=12.0,Temp.=423K) 4-15
圖4-10 反應起始濃度與半衰期之關係(Conc. =400 ~ 1000 mg/L, Pt=4.0 MPa,pH0=12.0,Temp.=503K) 4-16
圖4-11 反應起始濃度與半衰期之關係(Conc. =400 ~ 1000 mg/L, Pt=4.0 MPa,pH0=12.0,Temp.=473K) 4-16
圖4-12 反應起始濃度與半衰期之關係(Conc. =400 ~ 1000 mg/L, Pt=4.0 MPa,pH0=12.0,Temp.=423K) 4-17
圖4-13 反應速率常數(k)與反應溫度倒數(1000/T)之關係(添加觸媒;CWAO,半批次式) 4-19
圖4-14 氧分壓對NH3去除率及NO3-、NO2-選擇率之影響(Initial
Conc. of NH3=1000 mg/L,Temp. =503K,pH0=12.0,LHSV=6hr-1)4-21
頁數
圖4-15 添加Cu/La/Ce觸媒對NH3去除率及NO3-、NO2-選擇率
隨空間流速之影響(連續式)(Initial Conc. of NH3=400
mg/L, Pt=2.0 MPa,pH0=12.0,Temp. =503 K) 4-23
圖4-16 添加Cu/La/Ce觸媒對NH3去除率及NO3-、NO2-選擇率
隨空間流速之影響(連續式)(Initial Conc. of NH3=400 mg/L, Pt=2.0 MPa,pH0=12.0,Temp. =473 K) 4-23
圖4-17 添加Cu/La/Ce觸媒對NH3去除率及NO3-、NO2-選擇率
隨空間流速之影響(連續式)(Initial Conc. of NH3=400 mg/L, Pt=2.0 MPa,pH0=12.0,Temp. =423K) 4-24
圖4-18 不同起始濃度對NH3去除率之影響(Initial Conc. of NH3=1000~400 mg/L,Temp. =503K,pH0=12.0) 4-25
圖4-19 不同起始pH值對NH3去除率之影響(Initial Conc. of NH3=400 mg/L,Temp. =503K,pH0=12.0~2.0) 4-26
圖4-20 Cu/La/Ce觸媒觸媒活性衰退試驗(連續式)(Initial
Conc. of NH3=1000 mg/L, Pt=2.0 MPa,pH0=12.0
,LHSV=6hr-1,Temp. =503K) 4-27
圖4-21 以掃描式電子顯微鏡( SEM )拍攝之Cu/La/Ce觸媒表面
結構 (Un-used Catalyst;放大倍率:2000 X) 4-32
圖4-22 以掃描式電子顯微鏡( SEM )拍攝之Cu/La/Ce觸媒表
面結構 (Used Catalyst;放大倍率:2000 X)4-32
頁數
圖4-23 Cu/La/Ce觸媒之EDS圖(Un-used Catalyst) 4-34
圖4-24 Cu/La/Ce觸媒之EDS圖(Used Catalyst) 4-34
圖4-25 Cu/La/Ce觸媒之XRD圖(Un-used Catalyst) 4-36
圖4-26 Cu/La/Ce觸媒之XRD圖(Used Catalyst) 4-36
第六章 參考文獻1.Dobrynkin Nikolay M., Marina V. Batygina, Aleksandr S. Noskov (1998), “Solid Catalysts for Wet Oxidation of Nitrogen-Containing Organic Compounds”, Catalysis Today, Vol.45, pp.257-260.2.Ukropec R., B.F.M. Kuster, J.C. Schouten, R.A. van santen (1999), “Low Temperature Oxidation of Ammonia to Nitrogen in Liquid Phase”, Appl. Catal. B:Environmental, Vol.23, pp.45-47.3.顏裕林(1994,6),“臭氧去除水溶液中氨氮與亞硝酸氮之研究“,私立元智工學院化學工程研究所碩士論文。4.林敬二(2000),“化學大辭典“,高立圖書公司。5.Chemfinder Com.http://chemfinder.cambridgesoft.com/result.asp6.行政院環保署環境衛生及毒理管理處http://pika.epa.gov.tw:8800/toxic/prog/database/7.Adeghate E., S.H. Parvez(2000), “Nitric Oxide and Neuronal and Pancreatic Beta Cell Death”, Toxicology, Vol.153, pp.143-156.8.Helling R.K., Tester J.W. (1988), “Oxidation of Simple Compounds and Mixtures in Supercritical Water:Carbon Monoxide, Ammonia, and Ethanol”, Environ. Sci. Technol., Vol.22, pp.1319.9.Webley P.A., Tester J.W., Holgate H.R. (1991), “Oxidation Kinetics of Ammonia and Ammonia-Methanol Mixtures in Supercritical Water in the Temperature Range 530-700℃ at 246 bar”, Ind. Eng. Chem. Res., Vol.30, pp.1745.10.Li L., P. Chen, E.F. Gloyna (1991), “Generalized Kinetic Model for Wet Oxidation of Organic Compounds “, AIChE J., Vol.37, pp.1687-1697.11.Lee D.S., Gloyna E.F. (1992), “Hydrolysis and Oxidation of Acetamide in Supercritical Water”, Environ. Sci. Technol., Vol.26, pp.1587.12.陳賢焜(1986,6),“以填充式濾法去除水中氨氮之研究“,國立成功大學環境工程研究所碩士論文。13.王朝民(1989,6),“應用乾式濾床去除水中氨氮之可行性研究“,國立台灣大學環境工程研究所碩士論文。14.Konalski E. and Z. Lewanndowski (1983), “Nitritication Process in a Packed Bed Reactor with a Chemically Active Bed”, Wat. Res., Vol.17, pp.157.15.Weng C.N. and A.H. Molof (1974), “Nitritication in the Biological Fixed-Film Rotating Disk System”, J.WPCF, Vol.46, pp.1674.16.Young J.C., E.R. Baumann and D.J. Wall (1975), “Packed Bed Reactors for Secondary Effluent BOD and Ammonia Removal”, J.WPCF, Vol.47, pp.46.17.Singer P.C. and W.B. Zilli (1975), “Ozonation of Ammonia in Wastewater”, Wat. Res., Vol.9, pp.127.18.Monnery W.D., K.A. Hawboldt, A.E. Pollock, and W.Y. Svrcek (2001), “Ammonia Pyrolysis and Oxidation in The Claus Furnace”, Ind. Eng. Chem. Res., Vol.40, pp.144-151.19.黃冬梨,許世雄(1999),”利用疏水性觸媒去除水中氨之研究”,中華民國環境工程學會第二十五屆廢水處理技術研討會論文集,pp.708-712。20.Gang Lu, B.G. Anderson, J. van Grondelle, R.A. van Santen (2000), “NH3 Oxidation to Nitrogen and Water at Low Temperatures using Supported Transition Metal Catalysts”, Catalysis Today, Vol.61, pp.179-185.21.Ding Zhong Yi, Lixiong Li, Daniel Wade, and Earnest F. Gloyna (1998), “Supercritical Water Oxidation of NH3 Over A MnO2/CeO2 Catalyst”, Ind. Eng. Chem. Res., Vol.37, pp.1707-1716.22.Dell’Orco P.C., Gloyna E.F., Buelow S.J.(1997), “Reactions of Nitrate Salts with Ammonia in Supercritical Water”, Ind. Eng. Chem. Res., Vol.36, pp.2547.23.Huang Tung-Li, Keith R. Cliffe and Jordan M. Macinnes (2000) , “The Removal of Ammonia from Water by A Hydrophobic Catalyst”, Environ. Sci. Technol., Vol.34, pp.4804-4809.24.Klinghoffer Alec A., Ramon L. Cerro, Martin A. Abraham (1998) , “Catalytic Wet Oxidation of Acetic Acid Using Platinum on Alumina Monolith Catalyst”, Catalysis Today, Vol.40, pp.59-71.25.Khan Y., G.K. Anderson, and D.J. Elliott (1999), “Wet Oxidation of Activated Sludge”, Wat.Res., Vol.33, NO.7, pp.1681-1687.26.Debellefontaine Hubert, Simon Crispel, Philippe Reilhac, Frédéric Périé, Jean Noël Foussard (1999), “Wet Air Oxidation (WAO) for The Treatment of Industrial Wastewater and Domestic Sludge. Design of Bubble Column Reactors”, Chemical Engineering Science, Vol.54, pp.4953-4959.27.Debellefontaine Hubert, Jean Noël Foussard (2000), “Wet Air Oxidation for The Treatment of Industrial Wastes. Chemical Aspects, Reactor Design and Industrial Applications in Europe”, Waste Management, Vol.22, pp. 15-25.28.曾明加(2002),環保署環訓所http://www.epa.gov.tw/training/52-3-3.htm29.Luck F. (1999),“ Wet Air Oxidation: Past, Present and Future “, Catalysis Today, Vol.53, pp.81-91.30.顏駿翔(2001,6),“添加Mn/γ-Al2O3於觸媒濕式氧化程序處理 2,4-二氯酚水溶液之研究“,國立中山大學環境工程研究所碩士論文。31.Mishra V.S., V.V. Mahajani, J.B. Joshi (1995),“Wet Air Oxidation”, Ind. Eng. Chem. Res., Vol.34, iss. 1, pp.2-8.32.美國Zimpro公司網站http://zimpro.usfilter.com/products/industrial/wetair-ind.htm33.莊子賢(1993,6),“濕式氧化及活性污泥法處理含多成分酚類化合物廢水之研究“,私立元智大學化學工程研究所碩士論文。34.Mirjam, H. Schoonenboom, Hans E. Zoetmeijer, Kees Olie (1995), “Dechlorination of Octachlorodibenzo-p-Dioxin and Octachlorodibenzofuran on an Alumina Support“, Applied Catalysis B: Environmental, Vol.6, pp.11-20.35.許雄淙(1993,6),“濕式氧化法處理高濃度含氰廢液之研究“,國立台灣大學環境工程研究所碩士論文。36.張必杰(1995,7),“以濕式氧化法理印刷電路板顯像、去墨/剝膜廢液之研究“,國立中央大學環境工程研究所碩士論文。37.Chowdhury A.K., Copa W.C. (1996),“ Wet Air Oxidation of Toxic and Hazardous Organics in Industrial Wastewater “, Indian Chemical Engineer. , Vol.28, No.3, pp.3-11.38.鄒琮湣(1998,6),“以觸媒濕式氧化法處理鐵氰錯化合物之研究 “國立中山大學環境工程研究所碩士論文。39.Lecheng Lei, Xijun Hu and Po-Lock Yue (1998), “ Improved Wet Oxidation for the Treatment of Dyeing Wastewater Concentrate from Membrane Separation Process “, Wat. Res., Vol.32, No.9, pp.2753-2759.40.Khaled Belkacemi, Faical Larachi, Safia Hamoudi, Ginette Turcotte, and Abdelhamid Sayari (1999),“Inhibition and Deactivation Effects in Catalytic Wet oxidation of High-Strength Alcohol-Distillery Liquors “, Ind. Eng. Chem. Res., Vol.38, pp.2268-2274.41.Li L., Chen P., Gloyna E.F. (1991), “Generalized Kinetic Model for Wet Oxidation of Orangic Compounds”, AIChE J., Vol.37, pp.1687.Qin Jiangyan, Ken-ichi Aika (1998), “Catalytic Wet Oxidation of Ammonia Over Alumina Supported Metals”, Appl. Catal. B:Environmental, Vol.16, pp.261-268.42.Li L., N. Crain, E.F. Gloyna (1996), “Kinetic Lumping Applied to Wastewater Treatment “, Water Environ. Res., 68, pp. 841-854.43.Mantzavinos M., R. Hellenbrand, A. G. Livingston and I.S. Metcalfe (1997), “ Reaction Mechanisms and Kinetics of Chemical Pretreatment of Bioresistant Organic Molecules by Wet Air Oxidation ”, Water Sci. Tech., Vol. 35, No. 4, pp. 119-127.44.Rivas, F. J., S. T. Kolaczkowski, F. J. Beltrán and D. B. mcLurgh (1998), “ Development of a Model for the Wet Air Oxidation of Phenol Based on a Free Radical Mechanism ”, Chem. Eng. Sci., Vol. 53, No. 14, pp. 2575-2586.45.Dietrich M.J., T.L. Randall, and P.J. Canney (1985), “Wet Air Oxidation of Hazardous Organicity in Wastewater“, Environmental Progress, Vol.4, No.3, pp.171-177.46.Imamura S., D. Akira (1985), “Wet Oxidation of Ammonia Catalyzed by Cerium Based Composite Oxides “, Ind. Eng. Chem. Prod. Res. Dev., Vol.24, No.1, pp.75-80.47.Taguchi Junji, Teruyuki Nakato, and Toshio Okuhara (1999), “ Selective Oxidative Decomposition of Ammonia in Water to Nitrogen Catalyzed by Platinum-supported Titania “, Chemistry Letters, pp.277-278.48.Okada N., Y. Nakanishi, Y. Halada (1977), US Patent, Vol.4, pp.828.49.Luck F. (1996),“ Wet Air Oxidation: Past, Present and Future “, Catalysis Today, Vol.53, pp.81-91.50.Qin, J. and K.I. Aika, “Catalytic Wet Air Oxidation of Ammonia over Alumina Supported Metals (1998),” Applied Catalysis B: Environmental, Vol. 16, pp. 262-268.51.李炳楠,樓基中,賴俊谷(1999),”以濕式氧化法處理2,4-二氯酚水溶液之研究”,中華民國環境工程學會第二十四屆廢水處理技術研討會論文集,pp.335-340。52.William C., J. Heimbuch, and P. Schaefer (1988), “Demonstration of Wet air Oxidation of Hazardous Waste”, Incineration Hazardous Wastes, pp.261-269.53.Deiber G., J.N. Foussard and H. Debellefontaine (1997) , “Removal of Nitrogenous Compounds by Catalytic Wet Air Oxidation Kinetic Study”, Environment Pollution, Vol.96, pp.311-319.54.高志明(1994,6),”高溫水解併同濕式氧化處理鐵氰錯化合物之研究”,國立中央大學環境工程研究所碩士論文。55.杭州大學化學系分析化學教研室(1997),“分析化學手冊“,化學工業出版社出版,第二版,北京。56.林錕松、翁御棋、黃鈺軫、薛凱安、楊耀文、王鴻博(1998),“2-氯酚超臨界濕式氧化反應CuO/ZSM-5觸媒之EXAFS研究“,第廿十三屆廢水處理技術研討會論文集,pp.597-601。57.Joko I., T. Nakahara, Shokubai (1998), Kurita Water Ind. Ltd., Vol.39, pp.590.58.李炳楠,樓基中,顏伯宗(2000),“以觸媒濕式氧化法處理2,4-二氯酚水溶液之研究(I)”,第二十五屆廢水處理技術研討會,pp.563-568。59.吳榮宗 (1989),“工業觸媒概論”,國興出版社。60.胡興中(1991),“觸媒原理與應用”, 高立出版。61.李定粵(1991),“觸媒的原理與應用“,正中出版社。62.楊博渝(1998,6),“混合型金屬氧化物觸媒應用於焚化二氯甲烷之研究“,國立中山大學環境工程研究所碩士論文。63.Voorhoeve R. J. H., D. W. Johnson Jr., J. P. Remeika, P. K. Gallagher (1977), Perovskite Oxides: Materials Science in Catalysis, Science, 195, 827.64.Kieβling D., R. Schneider, P. Kraak, M. Haftendorn, G. Wendt (1998),“Perovskite-Type Oxides-Catalysts for the Total Oxidation of Chlorinated Hydrocarbons “, Appl. Catal. B:Environmental, pp.143-151.65.Jiangyan Qin, Qinglin Zhang, Karl. T. Chuang (2001),“ Catalytic Wet Oxidation of p-Chlorophenol over Supported Noble Metal Catalysts“, Appl. Catal. B:Environmental, Vol.29, pp.115-123.66.Salasc S., V. Perrichon, M. Chevrier, F. Mathis, N. Moral (1999), “ Magnetic Study of the Interaction of Hydrogen with a Pt/CeO2-Al2O3 Catalyst:Influence of the Presence of Chlorine “, Catalysis Today, pp.227-235.67.陳嘉雲、趙佳蓉(2000),“ 鉑金屬在不同擔體上性質的探討“,第十八屆台灣區觸媒及反應工程研討會,pp.437-440。68.楊家明(2000,6),“以離子交換法製備矽-鋁二元氧化物擔體鎳觸媒之研究“,國立中央大學化學工程研究所碩士論文。69.Willms R. S., M. B. Anne, D. R. Danny, M. W. David, and P. H. Douglas (1987),“Aqueous-phase Oxidation: The Intrinsic Kinetics of Single Organic Compounds”, Ind. Eng. Chem. Res., Vol.26, No.1, pp.148-154.70.Duprez D., F. Delanoë, J. Barbier Jr, P. Isnard, G. Blanchard (1996), “Catalytic Oxidation of Organic Compounds in Aqueous Media”, Catalysis Today, Vol.29, pp.317-322.71.Petryk Jan, Ewa Kolakowska (2000), “Cobalt Oxide Catalysts for Ammonia Oxidation Activated with Cerium and Lanthanum”, Appl. Catal. B:Environmental, Vol.24, pp.121-128.72.Chang, C. J., J. C. Lin and C. K. Chen (1994), “Effects of Temperture and Cu2+ Catalyst on Liquid-phase Oxidation of Industrial Wastewater,” J. Chem. Tech. Biotechnol., Vol. 57, pp. 355-361.73.Hamoudi, S., F. Larachi, and A. Sayari (1998), “Wet Oxidation of Phenolic Solutions over Heterogeneous Catalysts: Degradation Profile and Catalyst Behavior”, J. of Catalysis, Vol. 177, pp. 247-258.74.Lee, B.N., Lou, J.C., and Yen, P.C.(2002), “Catalytic Wet Oxidation of 2,4-Dichlorophenol Solutions:Activity of the Manganese-Cerium Composite Catalyst and Biodegradability of the Effluent Stream”, Water Environment Research, Vol.74 NO. 1, pp.28-32.75.戴玉龍(2000,6),“氧化釔添加對鎳觸媒擔載在氧化鈰擔體上行二氧化碳與甲烷重組反應之研究“,國立清華大學化學工程研究所碩士論文。76.Li, Y., Fu, Q., and Flytzani-Stephanopoulos, M.(2000), “Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts”, Appl. Catal. B:Environmental, Vol.27, pp.179-191.77.Zhu, T., Dreher, A., and Flytzani-Stephanopoulos, M.(1999), “Direct reduction of SO2 to elemental sulfur by methane over ceria-based catalysts”, Appl. Catal. B:Environmental, Vol.21, pp.103-120.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top