跳到主要內容

臺灣博碩士論文加值系統

(3.235.140.84) 您好!臺灣時間:2022/08/13 05:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:湛翔智
研究生(外文):Hsiang-Chih Chan
論文名稱:活塞式造波機模擬近岸碎波氣泡之聲學分析
論文名稱(外文):Acoustic Analysis of Nearshore Breaking Wave Bubbles Simulated by Piston-Type Wavemaker
指導教授:魏瑞昌
指導教授(外文):Ruey-Chang Wei
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海下技術研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:95
中文關鍵詞:碎波短時傅立葉轉換氣泡活塞式造波機環境噪音
外文關鍵詞:Ambient NoisePiston-type WavemakerBubblesShort-time Fourier TransformBreaking Wave
相關次數:
  • 被引用被引用:2
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
本文係探討以活塞式造波機水槽模擬近岸環境噪音,使用水下麥克風收集聲音訊號來分析碎波氣泡,並以數位攝影機拍攝氣泡影像以作為觀察。所使用的水槽設置於國立中山大學海洋科學院,水槽尺寸為長35公尺、寬1公尺、高1.2公尺,海床坡度為1:5,並以波高、週期及水深作為實驗變數,來探討碎波氣泡產生的環境噪音。本文用短時傅立葉轉換取得氣泡的聲音頻譜圖,並且使用MATLAB程式計算平均聲壓值與氣泡數。氣泡的定義為在頻譜圖中響應頻率範圍由0.5至10 kHz之間的峰值,因此,由碎波產生的氣泡可由能量分佈來推算。結果發現,噪音的聲壓值與波高、週期的相關性係數均高達0.7,同時,將本文得到的相關結果與實海量得的環境噪音比較。
This article studies ambient noise in the surf zone that was simulated by piston-type wavemaker in the tank. The experiment analyzed the bubbles of breaking wave by using a hydrophone to receive the acoustic signal, and the images of bubbles were recorded by a digital video camera to observe distribution of bubbles. The tank is in College of Marine Sciences, National Sun Yat-sen University, the dimensions of water tank are 35 m ×1 m ×1.2 m, and the slope of the simulated seabed is 1:5. The studied parameters of ambient noise generates by breaking wave bubbles were wave height, period, and water depth. Short-time Fourier Transform was applied to obtain the acoustic spectrum of bubbles, MATLAB programs were used to calculate mean sound pressure level, and determine number of bubbles. Bubbles with resonant frequency from 0.5 to 10 kHz were studied, counted from peaks in the spectrum. The number of bubbles generated by breaking waves could be estimated by bubbles energy distributions. The sound pressure level of ambient noise was highly related to the wave height and period, with correlation coefficient 0.7. The results were compared with other studies of ambient noise in the surf.
摘要…………………………………………………………i
Abstract…………………………………………………………ii
目錄…………………………………………………………iii
圖目錄…………………………………………………………vii
表目錄…………………………………………………………x
第一章 緒論………………………………………………1
1.1 研究背景………………………………………………1
1.2 相關文獻………………………………………………2
1.3 研究目的………………………………………………5
1.4 本文架構………………………………………………5
第二章 理論介紹………………………………………………6
2.1 碎波與海洋環境噪音…………………………………6
2.1.1 深海的碎波……………………………………………6
2.1.2 淺海的碎波……………………………………………7
2.2 氣泡與海洋環境噪音…………………………………9
2.3 氣泡共振………………………………………………11
2.3.1 氣泡運動方程式…………………………………11
2.3.2 阻尼效應………………………………………………14
2.3.3 共振的方式……………………………………………16
2.4 傅立葉轉換……………………………………………18
2.4.1 快速傅立葉轉換…………………………………18
2.4.2 短時傅立葉轉換…………………………………19
第三章 實驗架構與方法…………………………………21
3.1 實驗架構………………………………………………21
3.1.1 實驗設備………………………………………………21
3.1.2 實驗架設………………………………………………22
3.2 實驗方法………………………………………………24
3.2.1 造波過程………………………………………………24
3.2.2 氣泡拍攝………………………………………………24
3.2.3 收錄氣泡的聲音………………………………… 26
3.3 實驗分析……………………………………………… 26
3.3.1 實驗項目………………………………………………26
3.3.2 聲學分析………………………………………………27
3.3.3 氣泡計算程式架構…………………………………28
第四章 結果與討論……………………………………………… 30
4.1 雜訊分析……………………………………………… 30
4.1.1 儀器雜訊噪音…………………………………………30
4.1.2 背景噪音………………………………………………32
4.2 碎波噪音……………………………………………… 33
4.3 氣泡訊號……………………………………………… 34
4.3.1 氣泡訊號的特性………………………………… 34
4.3.2 氣泡共振頻率與半徑…………………………………35
4.3.3 氣泡能量分佈……………………………………………36
4.4 波浪與噪音………………………………………………39
4.4.1 波高對噪音的影響…………………………………39
4.4.2 週期對噪音的影響…………………………………42
4.5 碎波相似參數與噪音…………………………………43
4.6 實海與水槽實驗差異…………………………………45
4.6.1 阻尼效應差異………………………………………………45
4.6.2 實驗環境差異………………………………………………46
4.7 氣泡影像……………………………………………… 46
第五章 結論與建議………………………………………………48
5.1 結論…………………………………………………………48
5.2 建議…………………………………………………………49
參考文獻……………………………………………………………50
附錄A………………………………………………………………53
附錄A1………………………………………………………………63
附錄A2………………………………………………………………65
附錄B………………………………………………………………67
附錄C………………………………………………………………69
附錄D………………………………………………………………71
附錄E………………………………………………………………75
附錄F………………………………………………………………81
附錄G………………………………………………………………83
參考文獻[1]R. J. Urick, Ambient Noise in the Sea, Peninsula, 1993.[2]T. Garrison, Oceanography, Wadsworth, 1993.[3]R. J. Urick, Principles of Underwater Sound, McGraw-Hill, 1993.[4]G. M. Wenz, “Acoustic Ambient Noise in the Ocean: Spectra and Source,” J. Acoust. Soc. Am. 34(12), 1936-1956 (1962).[5]G. B. Deane, “Long Time-base Observations of Surf Noise,” J. Acoust. Soc. Am. 107(2), 758-770 (2000).[6]劉金源,水中聲學─水聲系統之基本操作原理,國立編譯館,2001。[7]H. Medwin and M. M. Beaky, “Bubble Sources of the Knudsen Sea Noise Spectra,” J. Acoust. Soc. Am. 86(3), 1124-1130 (1989).[8]G. B. Deane, “Sound Generation and Air Entrainment by Breaking Waves in the Surf Zone,” J. Acoust. Soc. Am. 102(5), 2671-2689 (1997).[9]J. S. Stroud and P. L. Marston, “Optical Detection of Transient Bubble Oscillations Associated with the Underwater Noise of Rain,” J. Acoust. Soc. Am. 94(5), 2788-2792 (1993).[10]吳漢傑,黃清哲,“水中降雨噪音特性之實驗研究”,國立成功大學水利及海洋工程學系1999年碩士論文精要,536-553,1999。[11]R. H. Mellen, “The Thermal-Noise Limit in the Detection of Underwater Acoustic Signals,” J. Acoust. Soc. Am. 24(5), 478-450 (1952).[12]B. R. Kerman, Ed., Sea Surface Sound, Kluwer Academic, Dordrecht, The Netherlands, 1998.[13]R. D. Hollett, “Observations of Underwater Sound at Frequencies below 1500 Hz from Breaking Waves at Sea,” J. Acoust. Soc. Am. 95(1), 165-170 (1994).[14]A. Prosperetti, “Bubble-related Ambient Noise in the Sea,” J. Acoust. Soc. Am. 84(3), 1042-1054 (1988).[15]H. N. Oguz and A. Prosperetti, “Bubble Oscillations in the Vicinity of a Nearly Plane Free Surface,” J. Acoust. Soc. Am. 87(5), 2085-2092 (1990).[16]H. N. Oguz, “A Theoretical Study of Low-frequency Oceanic Ambient Noise,” J. Acoust. Soc. Am. 95(4), 1895-1912 (1994).[17]M. S. Longuet-Higgins, “Bubble Noise Spectura,” J. Acoust. Soc. Am. 87(2), 652-661 (1990).[18]H. Medwin and C. S. Clay, Fundamentals of Acoustical Oceanography, Academic Press, 1998.[19]R. J. Urick and R. M. Hoover, “Backscattering of Sound from the Sea Surface: Its Measurement, Causes and Applications to the prediction of Reverberation levels,” J. Acoust. Soc. Am. 28, 1038-1042 (1956).[20]D. C. Blanchard and A. H. Woodcock, “Bubble Formation and Modification in the Sea and Its Meteorological Significance,” Tellus 9145-9158 (1957).[21]E. C. LaFond and J. Dill, “Do Invisible Microbubbles Exist in the Sea?” Navy Electronics Lab., San Diego, CA (1957).[22]V. P. Glotoc, et al., “Investigation of the Scattering of Sound by Bubbles Generated by an Artificial Wind in Seawater and the Statistical Distribution of Bubble Sizes,” Sov. Phys. Acoust. 7, 341-345 (1962).[23]P. D. C. Barnhouse, M. J. Stoffel, and R. E. Zimdar, “Instrumentation to Determine the Presence and Acoustic Effect of Microbubbles near the Sea Surface,” M. S. Thesis, U. S. Naval Postgraduate School, Monterey, Calif, (1964).[24]S. Buxcey, J. E. McNeil, and R. H. Marks, Jr., “Acoustic Detection of Microbubbles and Particulate Matter near the Sea Surface,” M. S. Thesis, U. S. Naval Postgraduate School, Monterey, Calif, (1965).[25]H. Medwin and C. S. Clay, “Dependence of Spatial and Temporal Correlation of Forward Scattered Underwater Sound on the Surface Statistics: Part II--Experiment,” J. Acoust. Soc. Am. 47, 1419-1429 (1970a).[26]H. Medwin, C. S. Clay, J. M. Berkson, and D. L. Jaggard, “Traveling Correlation Function of the Heights of Windblown Water Waves,” J. Grophys. Res. 75, 4519-4524 (1970b).[27]H. Medwin, “In Situ Measurements of Microbubbles at Sea,” J. Grophys. Res. 82, 971-976 (1977a).[28]H. Medwin, “Acoustical Determinations of Bubble-size Spectura,” J. Acoust. Soc. Am. 62, 1041-1044 (1977b).[29]H. Medwin, “Counting Bubbles Acoustically; a Review,” Ultrasonics 15, 7-13 (1977c).[30]R. K. Johnson, “Sound Scattering from a Fluid Sphere Recisited,” J. Acoust. Soc. Am. 61, 375-377 (1977) and Erratum Ibid 63, 626(E) (1978).[31]C. L. Piggott, “Ambient Sea Noise at Low Frequencies in Shallow Water of the Scotian Shelf,” J. Acoust. Soc. Am. 36, 2152-2163 (1964).[32]O. B. Wilson, Jr, Stephen N. Wolf, and Frank Ingenito, “Measurements of Acoustic Ambient Noise in Shallow Water Due to Breaking Surf,” J. Acoust. Soc. Am. 78 (1), 190-195 (1985).[33]M. R. Loewen and W. K. Melville, “An Experiment Investigation of the Collective Oscillations of Bubble Plumes Entrained by Breaking waves,” J. Acoust. Soc. Am. 95(3), 1329-1343 (1994).[34]M. R. Loewen and W. K. Melville, “A Model of the Sound Generated by Breaking Waves,” J. Acoust. Soc. Am. 90(4), 2075-2080 (1991).[35]許世盛,吳京,黃清哲,“近岸碎波產生氣泡之特性”,國立成功大學水利及海洋工程學系碩士論文,2000。[36]謝傳璋,張宗宏, “氣泡幕之聲學效應研究”,中華民國第十八屆海洋工程研討會論文集,960-964,1996。[37]黃峙璇,謝傳璋,“水下氣泡幕對聲波衰減之研究”,國立台灣大學造船及海洋工程學研究所碩士論文,2000。[38]蔡孟宏,馬幼俠,“聲波在氣泡水中傳播特性之研究”,國立中正大學應用地球物理研究所碩士論文,2000。[39]S. L. Means and R. M. Heitmeyer, “Low-frequency Sound Generation by an Individual Open-ocean Breaking Wave,” J. Acoust. Soc. Am. 110(2), 761-768 (2001).[40]D. J. Kewley, D. G. Browning, and W. M. Carey, “Low-frequency Wind-generated Ambient Noise Source Levels,” J. Acoust. Soc. Am. 88(4), 1894-1902(1990).[41]A. Kolaini, R. A. Roy, and L. A. Crum, “An Investigation of the Acoustic Emissions form a Bubble Plume,” J. Acoust. Soc. Am. 89(5), 536-537 (1991).[42]J. H. Wilson, “Low-frequency Wind-generated Noise Produced by the Impact of Spray with the Ocean’s Surface,” J. Acoust. Soc. Am. 68(3), 952-956 (1980).[43]T. G. Leighton, the Acoustic Bubble, Academic Press, 1994.[44]C. Devin, “Survey of Thermal, Radiation, and Viscous Damping of Pulsating Air Bubbles in Water,” J. Acoust. Soc. Am. 31, 1654-1667 (1959).[45]M. Strasberg, “The Pulsation Frequency of Nonspherical Gas Bubbles in Liquids,” J. Acoust. Soc. Am. 25(3), 536-537 (1953).[46]S. Kumar and C. E. Brennen, “Nonlinear Effects in the Dynamics of Clouds of Bubbles,” J. Acoust. Soc. Am. 89(2), 707-714 (1991).[47]湯麟武,徐忠猷,黃正欣,港灣及海域工程(第二版),中國土木及水利工程學會,1999。[48]郭金棟,海岸工程(第二版),中國土木及水利工程學會,1995。[49]R. G. Dean and R. A. Dalrympl, Water Wave Mechanics for Engineers and Scientists, World Scientific, 1991.[50]S. R. Massel, Ocean Surface Waves: Their Physics and Prediction, World Scientific, 1996.[51]W. Munk and P. Worcester and C. Wunsch, Ocean Acoustic Tomography, Cambridge, 1995.[52]A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & Systems, 2nd Edition, Prentice Hall, 1997.[53]黎文明,快速傅立葉轉換,復漢出版社,譯自「E. Oran Brigham, The Fast Fourier Transform」。[54]Brüel & Kjær, “Windows to FFT Analysis(Part I),” No. 3, Technical Review, 1987.[55]S. Qian and D. Chen, Joint Time-Frequency Analysis, Prentice-Hall, 1996.[56]D. F. Young, B. R. Munson, and T. H. Okiishi, A Brief Introduction to Fluid Mechanics, John Wiley & Sons, Inc. 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top