跳到主要內容

臺灣博碩士論文加值系統

(3.238.225.8) 您好!臺灣時間:2022/08/09 01:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳立玲
研究生(外文):Chen, Li-Ling
論文名稱:動態評量對國小二年級數學學習障礙兒童數學解題之應用成效
論文名稱(外文):Dynamic evaluation on the effectiveness of the math question solution for 2nd grade learning retarded children in elementary schools
指導教授:朱經明朱經明引用關係
學位類別:碩士
校院名稱:臺中師範學院
系所名稱:國民教育研究所
學門:教育學門
學類:綜合教育學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:160
中文關鍵詞:二年級數學學習障礙.動態評量
外文關鍵詞:2nd grade mathematically learning retarded students. Dynamic evaluation.
相關次數:
  • 被引用被引用:30
  • 點閱點閱:697
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:11
動態評量對國小二年級數學學習障礙兒童數學解題之應用成效
摘 要
本研究旨在探索數學解題動態評量對數學障礙兒童應用成效之研究,而主要研究目的在於:一、瞭解數學學習障礙學生「動態評量」表現,與「原來數學能力」、「語文理解」、「非語文智力」彼此之間的關聯。二、以動態評量方式,分析二年級數學學習障礙學生對那些數學問題較感困難。三、以動態評量方式,診斷二年級數學學習障礙學生錯誤類型的結果。四、探討二年級數學學習障礙學生的「原來數學能力」、「語文理解」、「非語文智力」對「數學解題動態評量」之預測功能。五、瞭解接受動態評量的學生,對動態評量所持有之態度。
本研究以中部四縣市七所國小之二年級學生為研究對象,取樣方式兼採學習障礙特徵檢核表及差距標準,共計研究樣木34人,男生17人,女生17人。本研究工具為「自編二年級數學解題動態評量」、「自編二年級數學解題動態評量問卷」、「學障檢核表」、「國民小學中低年級數學診斷測驗」、「托尼非語文理解測驗(乙式)」、「魏氏測驗(語文量表)」。資料分析所使用的統計方法包含相關係數、線性多元迴歸、並以Excel計算平均數、標準差及百分比,製作圓形圖。最後再將個別晤談資料進行原案分析。
歸納資料分析結果,本研究發現:
(一) 二年級數學學習障礙學生數學解題動態評量得分與原來數學能力、非語文智力、語文理解彼此之間具有顯著關係。
(二) 二年級數學學習障礙學生對兩步驟的文字題、有多餘訊息的文字題、除法的預備經驗等題目較感困難。
(三) 二年級數學動態評量結果顯示:23﹪的情況,二年級數學學習障礙學生沒有提示就能答對題。5﹪的情況,解題過程正確但計算錯誤,提示後即算對。有9﹪的情況,語音提示有效,應屬閱讀認字問題。有19﹪的情況,關鍵字提示有效;這些學生應加強其對數學語言的理解。另有9﹪的情況,學生經簡化題目後,可以正確解題;這些學生可鼓勵其熟練基本題型。有19﹪的情況,以直式列出計算步驟,學生即會解題;這些學生基本計算並無問題。有11﹪的情況需要半具體提示;這些學生可鼓勵以圖解增進解題能力。需要具體物操作只有2﹪;只有2﹪的情況,數學障礙學生經動態評量協助後,仍然完全不會。
(四) 本研究結果顯示只有「原來數學能力」是預測「數學解題動態評量得分」之最主要變項。
(五) 由「態度問卷」和「個別晤談」的資料顯示,接受動態評量的學生,對動態評量持認同態度。以動態評量方式會令他們有自信、有成就感、有實際解題幫助。可增進學習動機、對數學的自我信念有較正面的看法。
研究者並依據以上發現,對數學解題動態評量與未來研究方向提出若干建議。
關鍵字:二年級數學學習障礙.動態評量
Dynamic evaluation on the effectiveness of the math question solution for 2nd grade learning retarded children in elementary schools
Abstract
This research is for the purpose of finding out the effectiveness on the dynamic evaluation of math question solution for mathematically learning retarded children. The main purposes are to: 1.Understand mathematically learning retarded students’ exhibition on “Dynamic evaluation” and the correlation between “Original mathematic ability”, Verbal comprehension” and “nonverbal intelligence”. 2. Analyze what kinds of math question are most easily confusing the 2nd grade mathematically learning retarded students with “dynamic evaluation” method. 3. Find out the types of the wrong answers of those 2nd grade learning retarded students with “Dynamic evaluation” method. 4. Discuss about the forecasting function of the 2nd grade learning retarded students’ “Original mathematical ability”, “Verbal comprehension” and “nonverbal intelligence” for “Math question solution dynamic evaluation”. 5. Understand the attitude of those students, who took the dynamic evaluation, for the “Dynamic evaluation”.
This research is made on the 2nd grade students of 7 elementary schools in 4 counties/cities in Taiwan middle area as the objects of study. Sampling is using learning retarded features checking list and difference standard. The total research samplings are 34 people-17 boys and 17 girls. The research tools are “Self-edited 2nd grade math question solution dynamic evaluation”, “Self-edited 2nd grade math question solution dynamic evaluation poll sheet”, “Learning retard checking list”, “Mathematic diagnosis test for lower grade students of elementary schools”, “Test of nonverbal intelligence, TONI (Type B)” and “Wei-shi Test (Verbal Measure Sheet)”. The statistics method used in information analysis include related modulus, and linear multiple regression and then figure out the average value, standardized difference, percentage proportion, and make round chart with EXCEL. At last, the information of individual interview is to be analyzed.
After summing up all analysis results, we found:
(一) The scores that 2nd grade learning retarded students got in “Math question solution dynamic evaluation” have remarkable relationship with “Original math ability”, “Nonverbal intelligence” and “Verbal comprehension”.
(二) The 2nd grade mathematically learning retarded students are confused mostly with the questions of “two-step verbal question”, “Verbal question with extra information” and “Division preparation experience”, etc.
(三) The result of the math dynamic evaluation shows: In 23% cases, 2nd mathematically retarded students can answer correctly without cue. In 5%, the solution process is correct, but with calculation error. After cued, the answer is correct. In 9%, cuing key words works. It belongs to the reading problem. In 19%, cuing key words works, but these students shall strengthen their comprehension ability for mathematic language. In 9%, students can answer correctly after the question being simplified. These students shall be encouraged to do more basic questions. In 19%, students can answer correctly only when the counting steps being listed in vertical type. Basically, these students’ counting ability is fine. In 11%, students need more specific cues. These students shall be encouraged with illustration method to improve their solution ability. Only 2% need concrete demonstration. In only 2%, the mathematically learning retarded students are still able to answer after assisted by dynamic evaluation.
(四) The result of this research shows that only “Original math ability” is the primary variable to forecasting “Math question solution dynamic evaluation score”.
(五) Base on the “Attitude poll” and “Individual interview”, it shows the students, who took dynamic evaluation, have positive attitudes. Dynamic evaluation makes them feel confident and have sense of achievement. It practically helps improve the learning motive and have positive attitude of self-confidence to math. Depending on the above findings, the researchers offered several suggestions for “Math question solution dynamic evaluation” and “Future research direction”.
Keywords: 2nd grade mathematically learning retarded students. Dynamic evaluation.
目   錄
第一章 緒 論…………………………………………………………1
第一節 研究動機………………………………………………………1
第二節 研究目的與待答問題…………………………………………3
第三節 名詞解釋………………………………………………………4
第二章 文獻探討………………………………………………………5
第一節 動態評量的起源、理論基礎及特性…………………………5
第二節 動態評量的介入模式……………………………………….17
第三節 數學學習障礙學生之數學解題困難……………………….23
第四節 數學文字題解題策略……………………………………….26
第三章 研究設計與實施…………………………………………….33
第一節 研究架構…………………………………………………….33
第二節 研究假設…………………………………………………….33
第三節 研究對象…………………………………………………….34
第四節 研究工具…………………………………………………….36
第五節 研究程序…………………………………………………….41
第六節 資料分析………….………………………………………….43
第四章 結果與討論………………………………………………….45
第一節 二年級數學學習障礙學生動態評量得分與原來數學能力
、語文理解、非語文智力之相關分析…………….……….45
第二節 二年級數學學習障礙兒童對那些數學問題較感困難的統
計分析……………………………………………………….46
第三節 動態評量在診斷二年級數學學習障礙兒童錯誤類型的統
計分析……………………………………………………….47
第四節 二年級數學學習障礙學生的原來數學能力、語文理解、
非語文智力對數學解題動態評量的線性多元迴歸預測分
析………………………………………………….………….50
第五節 「數學解題動態評量態度問卷」及「個別晤談」之結果
與討論……..…..………………….…………….……………52
第六節 討論……………………………………………….………….55
第五章 結論與建議………………………………………………….57
第一節 結論…………………………………………………….…….57
第二節 建議…………………………………………………….…….57
參考文獻…………………………………………………………………61
附錄一:二年級數學解題動態評量………………………………….…73
附錄二:二年級數學解題動態評量評量表…………………………..147
附錄三:數學解題動態評量態度問卷………………………………...151
附錄四:個別晤談逐字稿..……………………………….…………..155
參考文獻
中文部分
毛連塭(民86)。學習障礙者的成長與教育。台北:心理出版社。
王曼娜(民86)。臺灣原住民國小學童學習潛能之釐測-運用動態評量模式。國立臺灣師範大學特殊教育研究所碩士論文。
古明峰(民86)。漸進教學支持的動態評量之實例與應用。特教季刊,65,18-22。
古明峰(民87)。動態評量在加、減法文字題學習與遷移歷程之應用研究。竹師學報,6,1-31。
申慧媛(民87年10月13日)。中小學童最恨數學最愛體育。自由時報,8。
江文慈(民82)。槓桿認知能力發展的評量與學習歷程的枌析-運用動態評量模式。國立臺灣師範大學教育心理與輔導研究所碩士論文。
江秋坪、洪碧霞、邱上真(民85)。動態評量對國語資源班鑑別與協助效益之探討。中國測驗學會年刊,43,115-140。
沈中偉、黃秋娟(民83)。魏考斯基的理論方法對心理學發展的啟示。視聽教育雙月刊,35(5),1-14。
沈中偉(民83)。魏考斯基的理論在認知策略上的應用。教學科技與媒體,2,23-31。
杜佳真(民84)。交互學習的建構教學課程對國小五年級不同批判思考能力學生速率問題解題歷程暨學習內發動機的影響。國立臺灣師範大學教育心理與輔導研究所碩士論文。
李坤崇(民88)。多元化教學評量。台北:心理出版社。
吳國銘(民83)。國小學童在動態評量中數學解題學習歷程與遷移效益之探討。國立台南師範學院國民教育研究所碩士論文(未出版)。
邱上真(民85)。動態評量-教學評量的新嘗試。載於國立高雄師範大學中小學教學革新研討會論文輯,33-49。
林秀娟(民82)。動態評量結合試題反應理論在空間視覺學習潛能評量之研究。國立臺灣師範大學教育心理與輔導研究所碩士論文(未出版)。
林清山(民84)。教育心理學-認知取向。台北:遠流出版公司。
林清山、何縕琪(民83)。國小學生解題的思考歷程與圖示策略表現之研究。載於中華民國第十屆科學教育學術研討會論文彙編,98-115。國立台灣師範大學印。
林敏慧(民81)。國小輕度智障兒學習潛能評量之研究。國立台灣師範學院特殊教育研究所碩士論文。
林麗容(民84)。特殊教育評量的重要取向-動態評量。特殊教育季刊,56,1-5。
周幸儀、梁淑坤(民83)。國小四年級乘除法文字題擬題與解題的初步調查。載於中華民國第十屆科學教育學術研討會論文彙編,401-414。國立台灣師範大學印。
胡永崇(民82)。動態性評量及其對特殊教育的啟示。初等教育研究,5,24-63。
洪儷瑜(民84)。學習障礙者教育。台北:心理出版社。
孫志麟(民80)。魏卡斯基的近側發展區理論。資優教育刊,40,9-12。
孫志麟(民81)。近側發展區理論對教學上的啟示。教育研究,24,24-31。
唐淑華(民84)。語文理解能力對解答數學應用題能力之實驗研究。八十四學年度師範學院教育學術論文發表會。國立屏東師範院印。
秦麗花(民88)。學障兒童適用性教材之設計。台北:心理出版社。
莊麗娟(民85)。小六年級浮力概念動態評量的效益分析。國立高雄師範大學教育研究所碩士論文(未出版)。
教育部(民88)。特殊教育統計年報。台北:教育部。
陳淑敏(民83)。Vygotsky的心理發展理論和教育。屏東師院學報,7,121-141。
陳進福(民83)。簡介動態評量。國教輔導,37(6),40-46。
梅錦榮(民80)。神經心理學。台北:桂冠圖書股份有限公司。
張鳳燕(民86)。教導心理學微觀──從概念學習談國小數學教育。師友月刊,80年2月,24-29。
黃偉鵑(民83)。小學生數學運算錯誤類型之研究。國立政治大學教育研究所碩士論文。
楊坤堂(民84)。學習障礙兒童。台北:五南書局。
蔡文煉(民84)。多媒體電腦輔助數學學障兒童減法學習成放之研究。國立臺灣師範大學特殊教育研究所碩士論文。
蔡榮貴(民79)。國小教師如何利用結果/過程的技術來診斷數學上的錯誤。嘉義師院學報,4,113-123。
劉湘川(民81)。數學科教學策略。載於何福田主編:從學習心理談教學策略,195-212。高雄:文山。
劉錫麒(民78)。國小高年級學生數學解題歷程及其相關因素的研究。花蓮市:真義出版社。
歐瑞賢(民86)。國小學生比例推理能力動態評量之效益分析。國立台南師範學院國民教育研究所碩士論文(未出版)。
英文部分
American Psychiatric Association(1994). Diagnostic and statistical manual of mental disorders. 4th ed.. Washington DC: Author.
Babbit, B.C. & Miller, S.P.(1993). Using Hypermedia to improve the mathematics problem-solving skills for students with learning disabilities. Journal of Learning Disabilities, 29(4), 391-402.
Baddian, N.A. & Ghublikian, M.(1983). The personal-social characteristics of children with poor mathematical computation skills. The Journal of Learning Disabilities,16, 145-157.
Bender, W.N.(1992)Learning disabilities: Characteristics, identification, and teaching strategies. 2nd ed.. Boston: Allyn and Bacon.
Budoff, M.(1987). Measures for assessing learning potential. In C.S. Lidz(Ed.), Dynamic assessment: An interactional approach to evaluation learning potential, 173-195. New York: Guiford Press.
Brown, A.L., & Campion, J.C., Webber, B., & McGilly, L.(1993). Interactive learning environments: A new look at assessment and instruction. In Gifford & O’Conner(Eds.), Changing assessments alternative views of aptitude, achievement and instruction, 121-212. Norwell: Kluwer Press.
Brown, A.L., & French, L.A.(1979). The Zone of Potential Development: Implications for intelligence testing in the year 2000. In R.J. Sternberg, & D.K. Determan(Ed.), Human intelligence, 217-235. Norwood, NJ: Ablex.
Bryant, D.P. & Bryant, B.R. & Hammill, D.D.(2000). Characteristics behavior of students with LD who have teacher-identified math weaknesses. Journal of Learning Disabilities, 33, 2, 168-177.
Budoff, M.(1987). The validity of learning potential assessment. In C.S. Lidz(Ed.), Dynamic assessment: An interactional approach to evaluation learning potential, 173-195. New York: Guiford Press.
Budoff, M., & Corman, L.(1974). Demographic and psychometric factors related to improved performance on the Kohs learning potential procedure. American Journal of Mental Deficiency, 78, 578-585.
Campione, J.C. & L.L.(1987). Linking dynamic assessment and school achievement In C.S. Lidz(Ed.), Dynamic assessment: An instructional approach to evaluating learning potential, 82-115. New York: The Guild Press.
Campione, J.C. & Brown, A.L.(1987). Linking dynamic assessment with school achievement In C.S. Lidz(Ed.), Dynamic assessment: An interactional approach to evaluating learning potential, 82-115. New York: The Guildford Press.
Campione, J.C. & Brown, A.L.(1990). Guided learning and transfer: Implications for approaches to assessment. In N. Frederiksen, R. Glaser, A. Lesgold, & M.G. Shafto (Eds.), Diagnostic monitoring of skill and knowledge acquisition. Hillsdale. NJ: Erlbaum.
Campione, J.C. & Brown, L.L.(1987). Linking dynamic assessment and school achievement In C.S. Lidz(Ed.), Dynamic assessment: An instructional approach to evaluating learning potential, 82-115. New York: The Guild Press.
Capruso, D.X., Hamsher, K. & Benton, A.L.(1995). Assessment of visuocognitive processes. In R.L. Mapou & J. Spector(Eds.), Clinical neuropsychological assessment, 137-183. New York: Plenum Press.
Caley, J.F., Parmar, R.S., Yan, W.F., & Miller, J.H.(1996). Arithmetic computation abilities of students with learning disabilities: implication for instruction. Learning Disabilities Research & Practice, 11(4), 230-237.
Carson, J.S. & Wiedl, K.H.(1992). The dynamic assessment of intelligence. In H.C. Haywood & D. Tzuriel(Eds.), Interactive Assessment,167-186. New York: Spring-Verlag Inc.
Day, J.D., & Cordon, L.A.(1993). Static and dynamic measures of ability: An experimental comparison. Journal of Educational Psychology,85(1), 75-82.
Day, J.D.(1983). The Zone of Proximal Development . In M. Pressley, & J.R. Levin(Ed.), Cognitive strategy research: psychological foundation, 155-171. New York: Spring-Verlag Inc.
Day, J.D., & Hall, L.K.(1987). Cognitive assessment, intelligence, and instruction. In J.D. Day & J.G. Borkowski(Eds.), Intelligence and exceptionality: New directons for theory, assessment, and instruction practices, 57-80. Norwood, NJ: Ablex.
Embretson, S.E.(1987). Toward development of a psychometric approach. In C.S. Lidz(Ed.), Dynamic assessment: An interactional approach to evaluating learning potential, 141-170. New York: The Guildford Press.
Ferrara, R.A.(1987). Learning mathematics in the zone of proximal development: The importance of flexible use of knowledge. Dissertation Abstracts International, 49, 01b, P.247(Publication No AAC 8803037)
Feuerstein, R.(1979), The dynamic assessment of related performers: The learning potential assessment device, theory, instrument, and techniques. Baltimore, MD: University Park Press.
Feuerstein, R., Klein, P.S., & Tannenbaum, A.J.(1991).Mediated Learning Experience(MLE): Theoretical, psychosocial and learning implications. London: Freund.
Feuerstein, R., Rand, Y., Jensen, M.R., Kaniel, S. & Tzuriel, D.(1987). Prerequisites for assessment of learning potential: The LPAD model. In C.S. Lidz(Ed.), Dynamic assessment: An interactional approach to evaluating learning potential, 35-51. New York: The Guilford Press.
Fuller, G.B., Awadh, A.M. & Vance, H.B.(1997). Assessing perceptual-motor skills. In H.B. Vance(Ed.), Psychological assessment of children: Best practices for school and clinical settings , 277-297. New York: John Wiley and Sons.
Gagne, R.M.(1993). Some issues in the psychology of mathematics instruction. Journal for Research in Mathematics Education, 14, 275-282.
Gagné, E.D.(1985). The psychology of school learning. Boston: Little, Brown and Company.
Gerber, M.M., Semmel, D.S. & Semmel, M.I.(1994). Computer-based dynamic assessment of multidigit multiplication. Exceptional Children, 61(2),114-125.
Gross, J.(1993). Special education needs in the primary school: A practical guide. Buckingham: Open University Press.
Haywood, H.C., & Switzky H.N.(1986). The malleability of intelligence: cognitive processes as a function of polygenic-ex-periential interaction. School psychology Review,15(2), 245-255.
Haywood, H.C., & Brown, A.L. & Wingenfeld, S.(1990).Dynamic approaches to psycho-educational assessment. School psychology Review,19(4), 441-422.
Haywood, H.C., & Wingenfeld, S.A.(1992). Interactive assessment as a research tool. The Journal of Special Education, 26(3), 253-268.
Haywood, H.C., & Tzuriel, D. & Vaught, S.(1992). Psycho-educational assessment from a trasactioanl perspective. In H.C. Haywood, & D. Tzuriel(Eds.). Interactive assessmnet, 38-63. New York: Spring-Verlag, Inc.
Howell, S.C. & Barnhart, R.S.(1992). Teaching word problem solving at the primary level. Teaching Exceptional Children,1992(winter),44-46.
Hoy, C. & Gregg, N.(1994). Assessment: The special educator’s role. Belmont, CA: Brooks/Cole.
Jerman, M., & Hyde, D.(1972). Predicting the relative difficulty of verbal arithmetic problems. Educational Studies in Mathematics, 4, 306-323.
Jitendra, A.K.(1991). An investigation of third grade students mathematical word problem solving utilizing dynamic assessment. Dissertation Abstracts International, 52, 09A, P.3177(Publication No ACC 9205815)
Kintsch, W.(1986). Learning from text. Cognition and Instruction, 3(2), 87-108.
Lerner, J.(1997). Learning disabilities: Theories, diagnosis, and teaching strategies. 7th ed.. Boston: Houghton Mifflin Company.
Lidz, C.S.(1987). Historical Perspectives. In C.S. Lidz(Ed.), Dynamic assessment: An interactional approach to evaluating learning potential, 35-51. New York: The Guilford Press.
Lidz, C.S.(1987). Practitioner’s guide to dynamic assessment. New York: The Guilford Press.
López, C.L. & Sullivan, H.J.(1991). Effects of personalized math instruction for Hispanic students. Contemporary Educational Psychology, 16(1), 95-100.
Marshall, S.P., Pribe, C.A. & Smith, J.D.(1987). Schema knowledge structure for representing and understanding arithmetic story problems. Arilington, VA: Office of Naval Research.
Mastropieri, M.A., Scruggs, T.E. & Shiah, R.L.(1997). Can computers teach problem-solving strategies to students with mild mental retardation? Remedial and Special Education, 18(3), 157-165.
Mayer, R.E.(1993). Understanding individual differences in mathematical problem solving: Towards a research agenda. Learning Disabilities Quarterly, 16(winter), 6-18.
Meltzer, L.J.(1993). Strategy use in students with learning disabilities: The challenge of assessment. In L.J. Meltzer(Ed.), Strategy assessment and instruction for students with learning disabilities, 93-140. Austin, TX: Pro-ed.
Mercer, C.D. & Mercer, A.R.(1998). Teaching students with learning problems. 5th ed.. New York: Merril.
Miles, T.R. & Miles, E.(1992). Dyslexia and mathematics. London: Rouledge.
Miller, S.P. & Mercer, C.D.(1993). Using data to learn about concrete-semiconcrete-abstract instruction for students with math disabilities. Learning Disabilities Research & Practice, 8(2), 230-237.
Montage, M.(1992). The effects of cognitive and metacagnitive strategy instruction on mathematical problem solving of middle school students with learning disabilities. Journal of learning Disabilities, 25(4), 230-248.
Montague, M.(1996a). Assessing mathematical problem solving. Learning Disabilities Research & Practice, 11(4), 238-248.
Montague, M.(1996b). Student perception, mathematical problem solving, and learning disabilities. Remedial and Special Education,18(1), 46-53.
Montague, M. & Applegate, B.(1993). Middle school students’ mathematical problem solving: An analysis of think-aloud protocols. Learning Disabilities Quarterly, 16(winter), 19-35.
Nesher, P., & Hershkovitz, S.(1994). The role of schemes in two-step problems: Analysis and research findings. Educational Studies in Mathematics, 26, 1-23.
Overton, T.(1996). Assessment in special education: An applied approach. 2nd ed.. Englewood Cliffs, NJ: Prentice-Hall.
Quintero, A.H.(1983). Conceptual understanding in solving two-step word problems with a ratio. Journal for Research in Mathematics Education, 14(2), 102-112.
Roditi, B. (1993). Mathematics assessment and strategy instruction: An applied development approach. In L.J. Meltzer(Ed.), Strategy assessment and instruction for students with learning disabilities, 293-324. Austin, TX: Pro-ed.
Silver, E.A.(1987). Foundations of cognitive theory nd research for mathematics problem-solving. In A.H. Schoenfeld(Ed.), Cognitive science and mathematics education, 33-60. New Jersey, NJ: Hillsdale.
Sowder, L.(1998). Chidlren’s solution of story problems. Journal of Mathematical Behavior, 7, 227-238.
Stone, C.A. & Conca, L.(1993). The origin of strategy deficits in children with learning disabilities: A social constructivist perspective. In L.J. Meltzer(Ed.), Strategy assessment and instruction for students with learning disabilities, 23-59. Austin, TX: Pro-ed.
Swanson, H.L.(1996). Classification and dynamic assessment of children with learning disabilities. In E. L. Meyen, G.A. Vergason, & R.J. Whelan(Eds.), Strategies for teaching exceptional children in inclusive settings, 192-208. Denver: Love Publishing Company.
Sweller, J.(1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257-285.
Taylor, R.L.(1997). Assessment of exceptional students. Boston: Allyn and Bacon.
Tzuriel, D.(1992). The dynamic assessment approach: A reply to Frisby and Braden. The Journal of Special Education, 26, 235-252.
Vaughn, S. & Wilson, C.(1994). Mathematics assessment for students with learning disabilities n G.R. Lyon(Ed.), Frames of reference for the assessment of learning disabilities, 459-472. Baltimore: Brooks.
Vergnaud, G.(1983). Multiplicative structures. In R. Lesh & M. Landau(Eds.), Acquisition of mathematics concepts and process, 127-174. New York: Academic Press.
Vygotsky, L.S.(1978). Mind in society: The development of higher psychological processes. Edited and Translated by M. Cole, V.John-Steiner, S. Scribner & E. Souberman. Cambridge, MA: Harvard University Press.
Wallace, G. & McLoughlin, J.A.(1988). Learning disabilities. Columbus: Merril.
Williams, M. A. & Boll, T.J.(1997). Recent advances in neuropsychological assessment of children. In G. Goldstein & T.M. Incognoli(Eds.), Contemporary approaches to neuropsychological assessment, 231-276. New York: Plenum Press.
Wood, P. Bruner, J., & Ross, G.(1976). The role of tutoring in problem solving. Child Psychology and Psychiatry,17, 89-100.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top