跳到主要內容

臺灣博碩士論文加值系統

(3.238.252.196) 您好!臺灣時間:2022/08/13 23:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴欣宏
研究生(外文):Shin-Hong Lay
論文名稱:不同環境條件下,完全混合式反應槽厭氧產氫效率及反應動力學之比較研究
論文名稱(外文):Kinetics Simulation and Process Control of Anaerobic Hydrogen-fermentation of CSTR under Various Operational Conditions
指導教授:林明瑞林明瑞引用關係
指導教授(外文):Min-Ray Lin
學位類別:碩士
校院名稱:臺中師範學院
系所名稱:環境教育研究所
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:174
中文關鍵詞:厭氧產氫完全混合式反應槽反應動力學溫度pHORP
外文關鍵詞:anaerobic hydrogen-fermentationCSTRreaction kinetics model simulationtemperaturepHORP
相關次數:
  • 被引用被引用:31
  • 點閱點閱:586
  • 評分評分:
  • 下載下載:99
  • 收藏至我的研究室書目清單書目收藏:3
廢水厭氧生物處理法有許多種不同的處理程序,適合不同形態的有機廢水,在其以甲烷化反應為主的厭氧分解過程,均有相當好的處理效率;唯其產生的甲烷沼氣若無適當利用而任其溢散到大氣環境中,將導致相當高比例的溫室效應增強作用。再者,同為厭氧代謝之產氫反應所產生的氫氣則無此問題。
本研究以廢水厭氧生物處理經驗為基礎,考慮厭氧產氫菌群的生理特性及所需的生長環境,設計適合厭氧產氫反應進行的四種典型的反應槽,包括:污泥迴流式反應槽(Sludge recycling reactor)、完全攪拌反應槽(Continuous flow stirred tank reactor, CSTR)、傳統無攪拌反應槽(Non-mixing conventional reactor)、柱塞流式反應槽(Plug flow reactor)等四種;本研究有兩個主要目的,第一部份是在探討污泥迴流式、完全混合式、無攪拌式和柱塞流式等四種厭氧反應槽,對不同有機體積負荷之合成有機廢水進行厭氧醱酵產氫消化反應之動力學模擬研究;第二部份是在探討完全混合式厭氧反應槽在不同溫度、pH與ORP下,進行厭氧醱酵產氫反應效率的比較與程序控制模式之模擬研究。
試驗結果顯示:當進流水COD濃度為2,000~15,000mg/L,HRT為6~24hrs.的操作範圍內,四種反應槽產氫效率都隨著進流基質濃度的提高與HRT減短而增加,其中又以HRT的影響較大;四種反應槽中以完全混合式反應槽最適於厭氧醱酵產氫反應,其次為無攪拌式反應槽,而污泥迴流式反應槽在高有機體積負荷時因為有較高的總產氣量才有不錯的產氫效果;這三種反應槽在進流水COD濃度為8,000mg/L,HRT為6 hrs.,氫氣組成比例及單位體積反應槽產氫量(mole-H2/m3·day)分別為55.3%與44.31 mole;26.4%與19.64 mole;22.7%與28.82 mole。本研究是以葡萄糖、牛肉汁為主要進流基質連續流試驗,故不適用模擬批次反應的Gompertz equation,以及模擬抑制性基值的Haldane equation。由迴歸結果得知,本研究微生物生長狀況適用Monod equation。
進流水COD濃度為10,000mg/L,HRT為4 hrs.,有機體積負荷為60kg-COD/m3·day,CSTR之產氫效率隨著醱酵溫度上升、pH降低與ORP下降而提高,每去除一克COD之產氫量(mmole/g-CODre)與單位體積反應槽之產氫率(mole/m3·day)分別以43℃的6.05 mmole與41.91mole,pH 4.5的5.37 mmole與32.98mole,-500 mv的5.61 mmole與39.61mole為最高。在螢光顯微鏡與電子顯微鏡的觀察發現,產氫效果佳時,污泥會發出黃橙色螢光;產氫效果不佳時,則發出藍綠色螢光,代表甲烷化較嚴重,可運用此結果來協助判定產氫成效。
綜合試驗結果得出完全混合式反應槽的產氫效率程序控制方程式如下:單位體積反應槽產氫率(mole-H2/m3·day)=[1.084(有機體積負荷)+0.500)]·1.071(T-20)·0.6424(pH-4.5)·0.6783(ORP -(-500))/100,試驗範圍為2~60 kg-COD/m3·day,溫度=35℃,pH=5.0~5.5。
Different kinds of anaerobic biological treatment processes can be used to treat different types of organic wastewater and result in very good treatment efficiency after complete reaction. However, if the produced methane does not be utilized and escape into the atmosphere, serious green-house effect will be increased. Furthermore, hydrogen-fermentation also in anaerobic processes will not result in the above problem.
This research is based on the wastewater anaerobic biological treatment experiences, considering physiological characteristics and the required growth environment of anaerobic hydrogen-fermentative bacteria. Four different kinds of reactors are employed, including sludge recycling reactor, continuous stirred-tank reactor (CSTR) , conventional reactor and plug flow reactor. There are two main purposes in this research: The first purpose include start-up of four different kinds of reactors, effects of influent organic strength, hydraulic retention time in order to establish the optimal operating conditions, kinetics, process control and model simulation of anaerobic hydrogen-fermentative process, and hydrogen productivity. The second purposes include various operational conditions, that is pH , temperature and ORP of CSTR, in order to establish the pattern control model and promote hydrogen productivity.
The study reveals that when the influent COD concentrations of 2,000~15,000 mg/L and the hydraulic retention times are 6,12,20,24,36 hrs., hydrogen productivity of the four different kinds of reactors is promoted with the increase of the influent COD concentration and the decrease of the HRT. The influence of HRT on hydrogen productivity is more greater than the influent COD concentration. Among these four reactors, the CSTR is the most suitable one for anaerobic hydrogen-fermentation process, the second one is the conventional reactor. The sludge recycling reactor brings about the better result of hydrogen productivity only in the case that there are more biogas because of organic loading. The conditions of the three reactors are as following: the influent COD concentration of 8,000 mg/L, the HRT 6 hours, the H2/H2+CH4 and hydrogen productivity (mole-H2/m3·day) of those reactor are respectively 55.3﹪and 44.31mole, 26.4﹪and 19.64mole, 22.7﹪and 28.82 mole. Because of the main ingredients of the synthetic organic wastewater are glucose and beef extract, Gompertz equation, that used in batch experiment, is not adopted. The regression result performed the Monod equation is fit for this study.
The study of CSTR was performed for influent COD concentration of 10,000 mg/L under HRT of 4 hrs. The hydrogen productivity of CSTR is promoted with the increase of the temperature and the decrease of pH and ORP. The best hydrogen productivity (mmole-H2/g-CODre and mole-H2/m3·day) of CSTR is 6.05mmole and 41.91mole on 43℃, 5.37mmole and 32.98mole on pH 4.5, 5.61mmole and 39.61 mole on -500mv.
Observed through the fluorescence microscope and the scanning electron microscope, here comes the results as presented : The better hydrogen productivity is, the brighter orange-yellow light shines; on the contrary, the worse efficiency, the brighter blue light, showing that methanogeneration is stronger. The results here can help us how to promote the hydrogen productivity.
The formula of the hydrogen productivity and process control model of CSTR was shown as following: Hydrogen productivity (mole-H2/m3·day)=[1.084(loading)+0.500)]·1.071(T-20)·0.6424(pH-4.5)·0.6786(ORP -(-500) )/100.
中文摘要 Ⅰ
英文摘要 Ⅲ
目 錄 Ⅴ
圖 目 次 VI
表 目 次 IX
第一章 前言 1
第一節 研究背景 1
第二節 研究目的 2
第二章 文獻回顧 4
第一節 廢水厭氧消化之原理 4
第二節 厭氧產氫與傳統厭氧消化反應之比較 7
第三節 各種厭氧產氫微生物之介紹 9
一、醱酵產氫微生物 9
二、光合產氫微生物 11
第四節 固定化厭氧產氫技術 12
第五節 厭氧產氫反應之環境影響因子 14
一、營養源 14
二、pH值、鹼度 16
三、揮發酸 20
四、毒性物質 22
五、溫度 26
六、氧化還原電位 29
七、水力停留時間(HRT) 29
八、其他影響因子 30
第六節 促進厭氧產氫之方法 32
一、操作在甲烷菌不適生長之環境 32
二、超高有機體積負荷 32
三、不穩定的生長環境 33
第七節 各種厭氧產氫反應槽之探討 33
第八節 厭氧產氫反應動力學模式之探討 36
一、Monod equation 36
二、Gompertz equation 38
三、Halane equation 39
第三章 實驗設備與方法 42
第一節 厭氧產氫反應槽及集氣設備 42
一、四種厭氧產氫反應槽 42
(一)污泥迴流式反應槽 42
(二)完全混合式反應槽 42
(三)無攪拌式反應槽 44
(四)柱塞流式反應槽 44
(五)完全混合式反應槽(溫度、ORP與酸鹼度試程) 44
二、氣體收集裝置 46
三、ORP批次試驗 48
四、其他設備 48
第二節 污泥來源與廢水配製 49
一、污泥來源 49
二、廢水配製 49
第三節 菌種篩選、植種與馴養 50
一、篩選 50
二、植種 51
三、馴養 51
第四節 操作條件 51
一、四種反應槽在不同有機體積負荷之操作條件 51
二、完全混合式反應槽在不同醱酵溫度、ORP與酸鹼度試程之操作條件 52
三、ORP之批次試驗 53
第五節 分析項目與方法 56
第六節 生物污泥之觀察 58
一、以位相差顯微鏡與螢光顯微鏡觀察反應槽之菌相 58
二、以掃描式電子顯微鏡(SEM)觀察反應槽之菌相 59
第四章 結果與討論 60
第一節 產氫效率及COD去除率 60
一、溫度效應 60
二、pH效應 70
三、ORP效應 79
四、單位體積反應槽之產氫效率與其他指標的迴歸關係式 89
五、ORP之批次試驗 93
第二節 其他水質指標 103
一、鹼度及揮發酸 103
二、氨氮、有機氮及總氮 107
三、SS及VSS 109
四、總揮發酸與其他指標的迴歸關係式 112
第三節 生物污泥濃度及菌相 116
一、生物污泥濃度與特性 116
二、菌相 119
(一)位相差與螢光顯微鏡觀察結果 119
(二)掃描式電子顯微鏡(SEM)之觀察結果 120
第四節 質量平衡 133
第五節 CSTR及其他三種反應槽厭氧產氫反應動力學之探討及模擬 138
一、氫氣組成與氫氣產量 138
二、完全混合式反應槽之產氫程序控制式 149
三、反應動力學 149
第六節 最佳操作條件之綜合評估 153
第五章 結論與建議 157
第一節 結論 157
一、不同條件之產氫效率 157
二、COD去除率 158
三、其他水質指標 159
四、生物污泥濃度及菌相 160
五、各代謝物之COD佔總進流COD之比例 160
六、四種反應槽之厭氧產氫反應 161
六、綜合結論 162
第二節 建議 163
參考文獻 164
參 考 文 獻
一、 中文書目:
白明德(民88)厭氧生物產氫機制與程序操作策略之研究。台南市:國立成功大學環境工程研究所碩士論文。
吳美惠(民76)以生化動力理論控制硝化處理程序。台南市:國立成功大學環境工程研究所碩士論文。
易武忠(民88)厭氧生物旋轉盤法處理含重金屬酚廢水廢水之研究。台中市:國立中興大學環境工程研究所碩士論文。
林明正(民88)CSTR厭氧產氫反應槽之啟動及操作。台中市:逢甲大學土木及水力工程研究所碩士論文。
林明瑞(民78)厭氧流動床法處理含氮、氯-酚類廢水之生物相反應及反應動力學模式之研究。台北市:國立台灣大學土木工程學研究所博士論文。
林明瑞(民79)厭氧廢水生物處理程序之探討。工業污染防治,36,150-180。
林秋裕、林明正、陳晉照(民88)中華民國環境工程學會第二十四屆廢水處理技術研討會,33-37。新竹市:國立交通大學環境工程研究所。
紀長國(民82)厭氧生物濾床之動力學模式。台南市:國立成功大學環境工程研究所博士論文。
涂良君(民88)產氫光合作用細菌之分離與產氫特性。中華民國環境工程學會第二十四屆廢水處理技術研討會,173-177。新竹市:國立交通大學環境工程研究所。
陳文欽、鄭幸雄、白明德、張仕旻、吳坤龍與陳文卿(民90)厭氧生物氫氣醱酵技術應用於污泥處理之可行性研究。國科會生物產氫研究成果發表會論文集,9-1~ 9-8。台南市:國立成功大學環境工程系。
黃士漢(民83)厭氧處理硝基酚及延散模式之模擬。台北市:國立台灣大學環境工程研究所碩士論文。
黃昕彥(民87)上流式厭氣污泥床處理抑制性基質之動力行為。台南市:國立成功大學環境工程研究所碩士論文。
經濟部工業局工業污染防制技術服務團(民82)厭氧處理新技術。台北市:經濟部工業局。
葉安晉(民83)厭氧旋轉生物圓盤處理有機廢水之研究。台中市:國立中興大學環境工程研究所碩士論文。
趙洪濱、金錐、劉馨遠 譯(民78)水處理工程。台北市:科技圖書股份有限公司。
鄭幸雄、曾怡禎、白明德(民88)中華民國環境工程學會第二十四屆廢水處理技術研討會,27-31。新竹市:國立交通大學環境工程研究所。
盧重興、林明瑞、李弘志、謝潮明(民84)厭氧旋轉生物盤溫度效應、圓盤轉速及圓盤浸水率之研究。中華民國環境工程學會第二十屆廢水處理技術研討會,323-330。
蕭景庭(民89)產氫光合作用細菌之生理特性研究。台中市:國立中興大學環境工程系碩士論文。
二、 英文書目:
Andrews, J. F. (1967) Dynamic Model of the Anaerobic Digestion Process. J. SED, ASCE, 95, 95-116.
APAH(1995)Standard Methods-for the Examination of Water and Wastewater, 19th ed, APAH.
Asenjo, J.A., & Dunnill, P. (1981) The isolation of lytic enzymes from cytophaga and their application to the rupture of yeast cells. Biotechnology and Bioengineering,33, 1045-1056.
Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wofle, R. S.(1979)Methanogens : Reevaluation of a Unique Biological Group. Microbical Review. 43(2), 260-296.
Benefiled. L.D. & Randall, C.W.(1986)Biological Process Design for Wastewater Treatment. New Jersey : Prentice-Hall, 460.
Benemane, J.(1996)Hydrogen Biotechnology: Progress and Prospects. Nature Biotechnology, 14,1101-1103.
Benjamin, M. M., Ferguson, J. F., & Buggins, M. E. (1989) Treatment of Sulfite Evaporator Condensate with an Anaerobic Reactor. TAPPI Environmental Conference, 1-10.
Busswell, A. M. (1961) Important Consideration in Sludge Digestion Ⅱ- Microbiology and Theory of Anaerobic Digestion. Sew. Works.
Carrondo, M. J. T.(1982) Anaerobic Filter Treatment of Molasses Fermentation Wastewater. IAWPR Specialised Seminar on Anaerobic Treatment.
Cha, G.C. & Noike, T.(1997)Effect of Rapid Temperature Change and HRT on Anaerobic Acidogenesis. Water Science Technology,36(6-7), 247-253.
Characklis, W. G. & Marshall, K. C.(1989)Biofilms. New York : John Wiley &Sons, 178.
Clark, J.H.(1978)Performance of a Rotating Biological Contactor under Varying Wastewater Flow. JWPCF, 50, 896.
Converse, J. C., Day, D. L., Pfeffer, J. T. & Jones, B. A. (1971) Aeration with ORP Control to Suppress Odors Emitted from Liquid Swine Manure Systems. Proc. Int. Symp. on Livestock Waste, American Soc. of Agric. Engr., St. Joseph, MI, 267-271.
Dilallo, R. & Albertson, O.E.(1961)Volatile Acid by Driect Titration. JWPCF, 33, 365.
Dirasian, H. A., Molof, A. H. & Borcharch, J. A. (1963) Electrode Potential in Digestion. JWPCF, 35, 424.
Edwards, T. & McBride, B.C.(1975)New Method for the Isolation and Identifition of Methanogenic Bacteria. Applied Microbial., 29(4),504-545.
Fascetti, E.,& Todini, O. (1995) Rhodobacter sphaeroides RV cultivation and hydrogen production in a One-Stage chemostat. Microbiol Biotechnology, 44,300-305.
Ferguson, J. F., Eis, B. J. &Benjamin, M. M. (1982) Neutralization in Anaerobic Treatment of an Acidic Waste. IAWPR- Specialised Seminar on Anaerobic Treatment, June, Copenhagen, Denmark.
Filer, J., Schirra, C., Kohring, G-W. & Giffhoun, F. (1995) Enhanced hydrogen production from aromatic acid by immobilized cells of Rhodopseudomonas palustris. Appied Microbiol Biotechnology, 44, 43-46.
Filer, J., Schirra, C., Kohring, G-W. & Giffhorn, F.,(1994)Hydrogen Production from Aromatic Acids by Rhodopseudomonas palustris . Applied Microbiol. biotechnology,41, 395-399.
Girbal, L., Crox, C. Vasconcelos, I. & Soucaille, P.(1995)Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiology Review, 17, 287-297.
Gregory, D.P.(1973)The Hydrogen Economy. Scientific American, 228, 13-21.
Gristu,O. (1989) Photobiological Production of Hydrogen by the Waste Water Treatment with Anaerobic Photosynthetic Purple Bacteria. Toxicological and Environmental Chemistry,20(21),495-500.
Gujer, W. & Zehnder, A. J. B. (1982) Conversion Processes in Anaerobic Digestion. IAWPR - Seminar on Anaerobic Treatment, June, Copenhagen, Denmark.
Guwy, A.J. ,Hawkes, F.R., Hawkes, D.L. ,& Rozzi, A.G. (1997) Hydrogen Production in a High Rate Fluidised bed anaerobic digester. Water Research, 31(6),1291-1298.
Hallenbeck, P. C.(1983) Immobilized Microorganisms for Hydrogen and Ammonia Production. Enzyme. Microbiology Technology, 5, 171-179.
Harper, S. R. & Pohland, F. G.(1986) Recent Developments in Hydrogen Management During Anaerobic Biological Wastewater Treatment. Biotechnology and Bioengineering, 28, 585-602.
Henze, M. & Harremöes, P. (1983) Anaerobic Treatment of Wastewater in Fixed Film ReactorsA Literature Review. Water Science and Technology, 15, 1-101.
Hillmer, P., & Gest, H.(1977a)H2 Metabolism in The Photosynthetic Bacterium Rhodopseudomonas capsulata : H2 Production by Growing Culture. Journal of Bacteriology, 129, 724-731.
Hillmer, P., & Gest, H.(1977b)H2 Metabolism in the Photosynthetic Bacterium Rhodopseudomonas capsulata : Production and Utilization of H2 by Resting Cell. Journal of Bacteriology , 129,732-739.
Hippe, H., Andreesen, J. R. &Gottschalk, G.(1992) The Genus Clostridium-Nonmedical.1800-1825, In :Balows, H., Trüper, H.G., Dworkin, M.,Hareder, W., and Schleifer, K.H.(2nd ed.), The Prokaryotes, Vol.3, Springer-Verlag, New York.
Hristu, O.(1989)Photobiological Production of Hydrogen by the Waste Water Treatment with Anaerobic Photosynthetic Purple Bacteria. Toxicological and Environmental Chemistry,20 -21,495-500.
Imhoff, J.F. & Trüper, H.G.(1992)The Genus Rhodospirillum and Relate Genera.2141-2155, In :Balows, H., Trüper, H.G., Dworkin, M.,Hareder, W., and Schleifer, K.H.(2nd ed.), New York: The Prokaryotes, Vol.3, Springer-Verlag.
Jeris, J. S. &McCarty, P. L. (1965) The Biochemistry of Methane Fermentation using C14 Tracers. JWPCF ,37, 178-192.
Kalia, V.C. & Joshi, A.P.,(1995)Conversion of Waste Biomass (Pea-Shells) into Hydrogen and Methane Through anaerobic Digestion. Bioresource Technology, 53, 165-168.
Karube, I., Urano, N. ,Matsunaga, T. & Suzuki, S.(1982) Hydrogen Production from Glucose by Immobilized Growing Cells of Clostridium butyricum. Eur J. Appl. Microbiol. Biotechnol., 16, 5-9.
Kashket, E.R. & Cao, Z.Y.(1995)Clostridial Strain Degeneration. FEMS microbiology Review, 17,307-315.
Kataoka, N. ,Miya, A., & Kiriyama, K.(1997)Studies on Hydrogen Production by Continuous Culture System of Hydrogen-Producing Anaerobic Bacteria. Proc. 8th International Digestion, 2, 383-389.
Kennedy, K. J. & van den Berg, L. (1982a) Anaerobic Digestion of Piggery Waste using a Stationary Fixed Film Reactor. Agricultural Wastes, 4, 151-158.
Kennedy, K. J. & van den Berg, L. (1982b) Thermophilic Downflow Stationary Fixed-Film Reactors for Methane Production from Bean Blanching Waste. Biotechnology Letters, 4(3) , 171-176.
Kidby, D.W. & Nedwell, D.B.(1991)An investigation into the Suitability of Biogas Hydrogen Concentration as a Performance Monitor for Anaerobic Sewage Sludge Digesters. Water Research,25(8),1007-1012.
Kobayashi, M. & Tchan, Y.T.(1973)Treatment of Industrial Waste Solutions and Production of Useful By-products using a Photosynthetic Bacterial Method. Water Research, 7, 1219-1224.
Kobayashi,M., Kobayashi, M. ,& Nakanishi, H.(1971)Construction of a Purification Plant for Polluted Water using Photosynthetic Bacteria. Studies on Photosynthetic Bacteria, 49(9),817-825.
Kondratieva, E.N.(1976)Phototrophic Micro-orgnisms as Source of Hydrogen and Hydrogenase formation .In Schlegel,H.G., and Barmea, J.(eds), Microbial Energy Conversion, Erich Goltze KG, Göttingen.
Kröeker, E. J., Schulte, D. O., Sparling, A. B., & Lapp. H. M. (1979) Anaerobic Treatment Process Stability. JWPCF, 51(4), 718-727.
Kumar, N. & Das, D.(2000)Emhancement of Hydrogen Production by Enterobacter cloacae IIT-BT 08. Process Biochemistry, 35, 589-593.
Kumar,A. ,Jain,S.R., Sharma,C.B. ,Joshi,A.P. & Kalia,V.C. (1995) Increased H2 Production by Immobilized Microorganisms. World Journal of Microbiology & Biotechnology, 11,156-159.
Lawrence, A. W. & McCarty, P. L. (1965) The Role of Sulfide in Preventing Heavy Metal Toxicity in Anaerobic Treatment. Journal of Water Pollution Control Fed., 37(3), 392-406.
Lay, J. J., Lee, Y. J. & Nokie, T.(1999)Feasibility of Biological Hydrogen Production from Organic Fraction of Municipal Solid Waste. Water Research, 33(11), 2579-2586.
Lay, J.J.(2000)Modeling and Optimization of Anaerobic Digested Sludge Converting Strach to Hydrogen. Biotechnology and Bioengineering, 68(3), 269-278.
Lee, Y.J. Miyahara, T. & Nokie, T.(1999)Effect of pH on the Microbal Hydrogen Fermentation. 7th IAWQ Asia-Pacific Regional Conference, 1, 215-220.
Li, A. Y. (1984) Anaerobic Processes for Industrial Wastewater Treatment. Department of Environmental Engineering, National Chung-Hsing University.
Lin, C.U., Chen C.C. & Lin, M.C.(民88)Hydrogen Production in Anaerobic Acidogenesis Process-Influnces of Thermal Isolation and Incubation Environment. 中華民國環境工程學會第二十四屆廢水處理技術研討會, 21-25,新竹市:國立交通大學環境工程研究所。
Lin, M. R. & Tseng, S. K. (1993) Effects of pH on Anaerobic Degradation of Aromatic Compounds. Journal of the Chinese Institute of Environmental Engineering, 3(1), 27-34.
Lo, K. V., Chen, A. & Liao, P. H. (1990) Anaerobic Treatment of Baker''s Yeast Wastewater II : Sulfate Removal. Biomass, 23, 25-37.
Lo, K. V.,& Liao, P. H. (1990) Anaerobic Treatment of Baker’s Yeast Wastewater I : Start-up and Sodium Molybdate Addition. Biomass, 21, 207-218.
Majizat, A., Mitsunori, Y., Mitsunori, W., Michimasa, N. & Jun’ichiro, M. (1997)Hydrogen gas production from glucose and its microbial kinetics in anaerobic systems. Proc.8th International Conf. on Anaerobic Digestion, 1, 261-267.
McCarty, P. L. (1964a) Anaerobic Waste Treatment Fundamentals Part One Chemistry and Microbiology. Public Works, 95, 107-112.
McCarty, P. L. (1964b) Anaerobic Waste Treatment Fundamentals-Part Two Environmental Requirements and Control. Public Works, 95, 123-126.
McCarty, P. L. (1964c) Anaerobic Waste Treatment Fundamentals - Part Three Toxic Materials and Their Control. Public Works, 95, 91-94.
Miyake, J., Mao, X. & Kawamura, S.(1984) Photoproduction of Hydrogen from Glucose by a Co-Culture of a Photosynthetic Bacterium and Clostridium butyricum. J. Ferment. Technol., 62(6), 531-535.
Miyake, J.M., Tomizuka, N. & Kamibayashi, A.(1982)Prolonged photo-hydrogen production by Rhodospirillum rubrum. J. Ferment. Techmol., 60(3),199-203.
Mizuno, O., Dinsdale, R., Hawkes, F.R. & Hawkes, D.L.(2000)Enhancement of Hydrogen Production from Glucose by Nitrogen Gas Sparging. Bioresource Technology, 73, 59-65.
Mizuno, O., Ohara, T., Shinya, M. & Noike, T.(1999)Characteristics of Hydrrogen Production from Bean Curd Manufacturing Waste by Anaerobic Microflora. 7th IAWQ Asia-pacific Regional Conference, 2, 1205-1210.
Monod, J.(1949)The Growth of Bacterial Cultures. Annual Reviews of Microbiology, 3,371-376.
Mosey, F. E., Swanwick, J. D. & Hughes, A.(1983)Water Pollution Control, 7, 668.
Mosey, F.E.(1983) Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Science Tech., 15, 209-232.
Nakamura, M., Kanbe, H. & Matsumoto, J. (1993) Fundamental Studies on Hydrogen Production in the Acid-Forming Phase and Its Bacteria in Anaerobic Treatment Processes-The Effects of Solids Retention Time. Water Science Tech., 28(7), 81-88.
Nandi, R. & Sengupta, S.(1998)Microbial Production of Hydrogen: An Overview. Critical Review in Microbiology. 24(1),61-84.
Odom, J. M. & Wall, J. D.(1983) Photoproduction of H2 form Cellulose by an Anaerobic Bacteria Co-culture. Applies and Environmental Microbiology,45(4),1300-1305
Ohta, Y.,Frank, J. & Mitsui,A.(1981)Hydrogen Production by Marine Photosynthetic Bacteria-Effect of Environment Factors and Substrate Specificity on Growth of a Hydrogen-Producing Marine Photosynthetic Bacterium, Chromatium sp. Miami PBS 1071. J. Hydrogen Energ., 6(5), 451-460.
Onoder, H., Miyahara, T. and Nokie, T.(1999)Influence of Ammonia Concentration on Hydrogen Transformation of Sucrose. 7th IAWQ Asia-pacific Regional Conference, 2, 1139-1145.
Pfeffer, J. T. (1980) Anaerobic DigestionAnaerobic Digestion Processes. London : Applied Science, 15-33.
Pipyn, L. ,& Verstraete, W. (1981) Lactate and ethanol as intermediates in two-phase anaerobic digestion. Biotechnology and Bioengineering, 13, 1145-1154.
Rachman, M.A. Furutani, Y. & Nakashimada, Y.(1997)Enhanced hydrogen Production in Altered Mixed Acid Fermentation of Glucose by Enterobacter aerogenes. Journal of Fermentation and Bioengineering. 83(4),358-363.
Rachman, M.A., Furutani, Y. ,Nakashimada, Y., Kakozono, T. ,& Nishio. N.(1997) Enhanced Hydrogen Production in Altered Mixed Acid Fermentation of Glucose by Enterobacter aerogenes. Journal of Fermentation and Bioengineering, 83(4)358-363.
Salkinoja-Salonen, M. S. et al.(1983)Staring-up of Anaerobic Fixed-Film Reactor. Water Science Technology, 15, 305-308.
Sarner, E., Hultman, B. G. & Berglund, A. E. (1988) Anaerobic Treatment using Technology for Controlling H2S Toxicity. Tappi Journal, 71, 41-45.
Sasikala, K., Ramana, C.V. & Rao, P.R.(1991)Enviromental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobactersphaeroides O.U.001*. Hydrogen Engerg, 154(6),795-797.
Singh, S.P. & Srivastava, S.C.(1991)Isolation of Non-Sulphur Photosynthetic Bacterial Strain Efficient in Hydrogen Production at Elevated Temperatures. Journal of Hydrogen Engerg.,16(6),403-405.
Smith, P. H. & Mah, R. A. (1966) Kinetics of Acetate Metabolism during Sludge Digestion. Appied Microbiology, 14,368-371.
Sparling, R., Risbey, D., & Poggi-Varaldo, H.M.(1997)Hydrogen Production from Inhibited Anaerobic Composters. International Journal Hydrogen Energy. 22(6),563-566.
Speece, R. E. & McCarty, P. L. (1964) Nutrient Requirements and Biological Solids Accumulation in Anaerobic Digestion. Advances in Water Pollution Research, 2, 305-322.
Spengel, D.B. & Dzombak, D.A.(1992)Biokinetic Modeling and Scale-up Considerations for Roatating Biological Contactors. Water Environment Research. 64(3),223-235.
Stevens, P.,Vertoghen, C., Vos, P.D. & Ley, J.D.(1984)The effect of temperature and light intensity on hydrogen gas production by different Rhodopseudomonas capsulata strains. Biotechnology Leet., 6(5), 277-282.
Strong,G.E. & Cord-Ruwisch,R.(1995) An in Situ Dissolved-Hydrogen Probe for Monitoring Anaerobic Digesters under Overload Conditions. Biotechnology and Bioengineering, 45,63-68.
Taguchi, F., Chang, J. D., Takiguchi, S. & Morimoto, M. (1992), Efficient Hydrogen Production From Starch by a Bacterium Isolated from Termites. Journal of Fermentation and Bioengineer, 73(3), 244-245.
Tanisho, S., & Ishiwata, Y.(1994) Continuous Hydrogen Production from Molasses by the Bacterium Enterobacter Aerogenes. International Journal of Hydrogen Energy, 19(10),807-812.
Thauer, R.K. ,Jungermann, K., & Derker, K.(1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Review,41(1),100-180.
Ueno, Y., Kawai, T., Sato, S.,Otsuka, S. & Morimoto, M.(1995)Biological Production of Hydrogen from Cellulose by Natural Anaerobic Microflora. Journal of Fermentation and Bioengineering. 79(4),395-397.
van den Berg, L. & Lentz, C. P. (1977) Food Processing Waste Treatment by Anaerobic Digestion. In Proceedings of the 32nd Industrial Waste Conference, 252-258.
van den Berg, L. & Lentz, C. P. (1980) Performance and Stability of the Anaerobic Contactor Process as Affected by Waste Composition, Inoculation and Solids Retention Time. In Proceedings of the 35th Industrial Waste Conference.
van Velsen, A. F. M. & Lettinga, G. (1979) Effect of Feed Composition on Digester Performance. Anaerobic Digestion, 113-130.
Verstraete, W. L., de Baere, & Rozzi, A. (1981) Phase Separation in Anaerobic Digestion : Motives and Methods. Trib. Cebedeau, 34, 367-375.
Vincenzini, M., Materassi, R.., Tredici, M. R. & Florenzano, G.(1982)Hydrogen Production by Immobilized Cell Light-Dependent Dissimilation of Organic Substances by Rhodopseudomonas Palustris. Journal of Hydrogen Energy, 7(3).
Wang, D. I. C. & Cooney, C. L. (1979) Fermentation and Enzyme Technology. New York: John Wiley & Sons.
Woo, S. J., Lee, J. K., Kwon, T. J. & Kho, Y. H. (1985)Sanop Misa engmul Hakhoechi ,13,257.
Woodward, J., Orr, Mark., Cordray, K. & Greenbaum, E.(2000)Efficient Production of Hydrogen from Glucose-6-Phosphate. Proceeding of the 2000 Hydrogen Program Review. May 9-11, 1-8, San Ramon, California.
Yokoi, H., Ohkawara, T., Hirose, J., Hayashi, S. & Takasaki, Y.(1995)Characteristics of Hydrogen Production by Aciduric Enterobacter aerogenes Strain HO-39. Journal of Fermentation and Bioengineer, 80(6), 571-574.
Yokoi, H., Tokushige, T., Hirose, J., Hayashi, S. & Takasaki, Y.(1997), Hydrogen Production by Immobilized Cells of Aciduric Enterobacter aerogenes Strain H0-39. Journal of Fermentation and Bioengineer, 83(5), 481-484.
Yokoi, H., Maeda, Y. , Hirose, J., Hayashi, S. ,& Takasaki, Y.(1997)H2 Production by Immobilized Cells of Clostridium butyricum on Porous Glass Beads. Biotechnology Techniques, 11(6),431- 433.
Zajic, J.E. Kosaric, N. & Brosseau, J.D.(1978)Microbial Production of Hydrogen. Adv. Biochem. Eng., 7, 57-109.
Zehnder, A. J. B., Ingvorsen, K., & Marti, T. (1981) Microbiology of Methane Bacteria. The Second International Symposium on Anaerobic Digestion, 6-11, Travem , Germany.
Zoetemerey, R.J., Arnolody, P., Cohen, A. & Boelhouwer, C.(1982)Influence of Temperature on the Anaerobic Acidification of Glucose in A Mixed Culture Digestion Process. Water Research, 16,313-321.
Zürrer, H., & Bachhofe, R.(1982)Apsects of growth and hydrogen production of the photosynthetic bacterium Rhodospirillum rubrum in continuous culture. Biomass 2, 165-174.
Zwietering, M.H., Jongenburger, I., Rombouts, F.M. & Van’t Riet , K.(1990)Modeling of Bacteria Growth Curve. Applied and Environmental Microbiology, 56(6),1875-1881.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top