跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/14 14:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱毓明
論文名稱:四種反應槽厭氧產氫效率之比較研究
論文名稱(外文):Hydrogen-Productivity Comprison of Four types of Anaerobic Fermentation Reactors
指導教授:林明瑞林明瑞引用關係
學位類別:碩士
校院名稱:臺中師範學院
系所名稱:環境教育研究所
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:125
中文關鍵詞:厭氧醱酵產氫完全混合式柱塞流式無攪拌式污泥迴流式Clostridium
外文關鍵詞:anaerobic fermentation and hydrogen productionContinuous flow stirred tank reactorPlug flow reactorNon-mixing conventional reactorSludge recycling reactorClostridium
相關次數:
  • 被引用被引用:2
  • 點閱點閱:332
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
傳統的廢水厭氧生物處理法可處理各種不同的有機廢水,且能回收以甲烷為主的沼氣能源,但因其為溫室效應氣體,依全球氣候綱要公約規定,將下一波遭受溫室效應管制的氣體。而厭氧醱酵產氫技術,因可產生無溫室效應的氫氣能源,因而極具市場開發潛力。
本研究考慮厭氧產氫菌群的生理特性及生長環境後,設計適合厭氧產氫反應進行的四種典型反應槽─污泥迴流式反應槽(Sludge recycling reactor)、完全混合式反應槽(Continuous flow stirred tank reactor, CSTR)、傳統無攪拌式反應槽(Non-mixing conventional reactor)、柱塞流式反應槽(Plug flow reactor)等,進行四種反應槽醱酵產氫效率及廢水處理效率之比較研究,以瞭解何者最適合厭氧醱酵產氫反應,並探討各種反應槽最佳的操作條件為何?
試驗結果顯示:當進流水COD濃度為2,000~15000mg/L,HRT為6~24hrs.的操作範圍內。四種反應槽在有機負荷60 kg-COD/m3 .d時產氫率最佳。四種反應槽中以完全混合式反應槽最適合厭氧醱酵產氫反應,產氫率150 ml/g-CODre,單位反應槽產氫量774 L -H2/ m3 .d(1atm,25℃)。其次為無攪拌式反應槽,產氫率129 ml/g-CODre,單位反應槽產氫量646 L -H2/ m3 .d(1atm,25℃)。而污泥迴流式反應槽在高有機體積負荷時因為有較高的總產氣量才有不錯的產氫效果,產氫率74.9 ml/g-CODre ,單位反應槽產氫量1100 L -H2/ m3 .d(1atm,25℃)。四種反應槽產氫效率都隨著有機負荷的增加與HRT減短而增加,其中以HRT影響較大。四種反應槽在有機負荷2 kg-COD/m3 .d時COD去除率最佳,四種反應槽之COD去除率可達54.0%~60.1﹪間,這是因為在低有機體積負荷時因為甲烷化嚴重才有不錯的COD去除率;四種反應槽在有機負荷60 kg-COD/m3 .d時COD去除率最差,四種反應槽之COD去除率為9.0.%~19.0﹪間。四種反應槽的COD去除率都隨著有機負荷的增加與HRT減短而減少。
在螢光顯微鏡與電子顯微鏡的觀察發現,厭氧醱酵產氫效果佳時,污泥中含有大量的Clostridium菌會發出黃橙色螢光;產氫效果不佳時,則發出藍色螢光,代表甲烷化較嚴重,可運用此結果來協助判定厭氧醱酵產氫之成效。
The conventional anaerobic wastewater treatments are able to deal with various types of organic wastewater and able to recovery biogas, which is mainly methane. Based on the regulation of the Framework Convention On Climate Change, methane is the next item to be put under control due to its greenhouse effect. Hydrogen produced by anaerobic fermentation can be used as an energy source with no greenhouse effect and therefore, become a highly potential technique with a great commercial market.
After considering the physiological characteristics and growth condition of anaerobic hydrogenic bacteria, this study has designed 4 typical reactors suitable for anaerobic hydrogenesis , including Sludge recycling reactor, Continuous flow stirred tank reactor (CSTR), Non-mixing conventional reactor, and Plug flow reactor. The hydrogen productivity and wastewater treatment efficiencies of these 4 reactors were compared to evaluate which is the best for anaerobic production of hydrogen. The best operation condition of each reactor was also determined.
As the results shown, within the influent COD concentration being 2,000-15,000 mg/L and HRT being 6-24 hrs, the hydrogen productivity is the best with an organic loading of 60 kg-COD/m3×d. Among these 4 reactors, continuous flow stirred tank reactor is the most appropriate for anaerobic fermentation hydrogenesis with a hydrogen productivity of 150 ml/g-CODre and a hydrogen productivity of per unit reactor of 774 L-H2/m3×d(1atm,25℃), followed by non-mixing conventional reactor with a hydrogen productivity of 129 ml/g-CODre and a hydrogen productivity of per unit reactor of 646 L-H2/m3×d(1atm,25℃). Only at a higher organic loading, sludge recycling reactor has a higher efficiency of hydrogen production due to the higher total production with a hydrogen productivity of 74.9 ml/g-CODre(1atm,25℃) and a hydrogen productivity of per unit reactor of 1100 L-H2/m3×d(1atm,25℃). The hydrogen productivity of each reactor was increased with the increase of organic loading and the decrease in HRT, furthermore, the effect of HRT was more significant. At an organic loading of 2 kg-COD/m3×d, all reactors have the best COD removal, ranging from 54.0 to 60.1%, due to the highly methanation at the low organic loading. At an organic loading of 60 kg-COD/m3×d, all reactors have the worst COD removal, ranging from 9.0 to 19.0%. The COD removal of each reactor was decreased with the increase in organic loading and the decrease in HRT.
From the observation under the fluorescent microscope and electron microscope, it was found that yellow-orange fluorescence was emitted by a large amount of Clostridium bacteria in biomass while the anaerobic fermentation hydrogenesis was good. However, blue fluorescence, which indicated a highly methanation, was emitted while the anaerobic fermentation hydrogenesis was poor. These results may be helpful in determining the efficiency of anaerobic fermentation hydrogensis .
目 錄
中文摘要------------------------------------------------------- Ⅰ
英文摘要------------------------------------------------- Ⅲ
目 錄------------------------------------------------------- Ⅴ
圖 目 次------------------------------------------------------- Ⅷ
表 目 次------------------------------------------------------- Ⅹ
第一章 前 言------------------------------------------------------ 1
第一節 研究背景及動機---------------------------------- 1
第二節 研究目的------------------------------------------ 1
第二章 文獻回顧------------------------------------------ 3
第一節 能源危機與生質能-------------------------- 3
第二節 傳統厭氧廢水處理、厭氧醱酵產氫之比較----- 5
一、厭氧反應機制---------------------------- 6
二、厭氧產氫-------------------------------- 8
第三節 各種厭氧產氫微生物及其途徑------------------ 9
一、厭氧醱酵產氫------------------------------------- 10
二、光合產氫------------------------------------------- 11
三、厭氧醱酵產氫之控制方式------------------ 14
第四節 篩選厭氧產氫菌之方法------------------------- 16
第五節 厭氧醱酵產氫之影響因子------------------ 16
一、pH值對厭氧產氫反應的影響--------------------- 17
二、溫度及溫度急遽變化對厭氧產氫反應的影響 17
三、揮發酸及HRT對厭氧產氫反應的影響----------- 19
四、厭氧產氫所需的基質及營養源------------------- 20
五、氨氮及硫酸鹽對厭氧產氫反應的影響----------- 23
六、重金屬及無機鹽類對厭氧產氫反應的影響--- 25
七、污泥停留時間對厭氧處理之酸化產氫及酸化 相細菌的影響------------------------------------- 25
八、反應槽中氫分壓對厭氧醱酵產氫的影響-------- 26
九、固定化生長對產氫的影響------------------------ 26
第六節 適合產氫反應之微生物種類、生長特性及 污泥來源對產氫菌種的影響------------------ 26
第七節 厭氧醱酵產氫反應槽之操作特性---------------- 29
第八節 各種厭氧產氫反應槽之探討--------------------- 30
一、 污泥迴流式反應槽 30
二、 完全混合式反應槽 30
三、 傳統無攪拌式反應槽 30
四、 柱塞流式反應槽 30
第九節 迅速篩選、馴養厭氧產氫菌之方法-------------- 31
第十節 厭氧產氫反應動力學模式之探討---------------- 32
第三章 試驗設備及方法--------------------------------- 36
第一節 厭氧產氫反應槽及集氣設備---------------------- 36
一、四種厭氧產氫反應槽---------------------------- 35
二、氣體收集裝置----------------------------------- 39
三、其他設備--------------------------------------- 40
第二節 污泥來源與廢水配製----------------------------- 40
一、污泥來源----------------------------------------- 40
二、廢水配置----------------------------------------- 40
第三節 篩選、植種與馴養-------------------------------- 41
一、篩選------------------------------------------------ 41
二、植種------------------------------------ 42
三、 馴養----------------------------------------------- 42
第四節 操作條件------------------------------------------- 42
一、四種反應槽在不同有機負荷之操作條件------- 41
第五節 分析項目與方法---------------------------------- 43
第六節 生物污泥之觀察---------------------------------- 46
一、以位相差顯微鏡與螢光顯微鏡觀察反應槽之菌 相------------------------------------------------- 46
二、以掃描式電子顯微鏡(SEM)觀察反應槽之菌 相-------------------------------------------------- 47
第四章 結果與討論------------------------------------------- 48
第一節 總產氫率及總產氣率之比較------------------- 48
一、四種反應槽產氫率之比較----------------------- 48
二、四種反應槽每單位體積反應槽產氫量之比較 53
三、每單位污泥產氫量之比較---------------------- 53
四、每單位體積反應槽產氣量之比較--------------- 54
第二節 四種反應槽COD去除率之比較----------------- 62
第三節 其他水質指標------------------------------------- 67
一、鹼度----------------------------------------------- 67
二、酸度----------------------------------------------- 69
三、氨氮、有機氮及總氮--------------------------- 76
四、SS及VSS----------------------------------------- 80
第四節 生物污泥濃度及菌相------------------------------ 82
一、生物污泥濃度------------------------------------ 82
二、菌相----------------------------------------------- 83
第五節 質量平衡------------------------------------------- 103
第六節 四種反應槽反應動力學之探討及模擬----------- 107
第七節 四種反應槽之綜合評估--------------------------- 112
第五章 結論與建議--------------------------------------- 114
第一節 結論---------------------------------------------- 114
一、不同有機負荷下,四種反應槽產氫效率之比 較------------------------------------------------ 114
二、各種反應槽產氫率最佳操作條件 115
三、不同有機負荷下,四種反應槽COD去除率之 比較-------------------------------------------- 115
四、其他水質指標------------------------------------ 115
五、生物污泥濃度與菌相---------------------------- 116
六、綜合結論------------------------------------------ 117
第二節 建議---------------------------------------------- 118
參考文獻------------------------------------------------------ 119
圖 目 錄
圖2-1 厭氧甲烷產出總能量與氫及甲烷系統的比------------ 5
圖2-2 參與有機物厭氧代謝程序之細菌群組------------ 6
圖2-3 生物產氫路徑示意圖------------------------------------ 10
圖2-4 厭氧醱酵產氫中的電子傳遞系統--------------------- 13
圖2-5 光合固氮產氫示意圖------------------------------------ 13
圖2-6 各種有機物的主要厭氧消化途徑---------------------- 15
圖2-7 厭氧微生物轉換有機物質之主要酸鹼平衡式及其 造成緩衝能力的影響----------------------------------- 22
圖3-1 污泥迴流式反應槽流程圖------------------------------ 38
圖3-2 完全混合式反應槽流程圖------------------------------ 38
圖3-3 無攪拌式反應槽流程圖--------------------------------- 39
圖3-4 柱塞流式反應槽流程圖--------------------------------- 39
圖3-5 揮發酸成分分析前處理程序流程圖-------------------- 45
圖4-1 污泥迴流式反應槽產氫率隨有機負荷之變化--------- 57
圖4-2 完全混合式反應槽產氫率隨有機負荷之變化--------- 57
圖4-3 無攪拌式反應槽產氫率隨有機負荷之變化------------ 58
圖4-4 柱塞流式反應槽產氫率隨有機負荷之變化------------ 58
圖4-5 四種反應槽在低有機負荷時產氫率隨有機負荷之變 化------------------------------------------------------- 58
圖4-6 四種反應槽在高有機負荷時產氫率隨有機負荷之變 化------------------------------------------------------- 59
圖4-7 四種反應槽在低有機負荷單位體積反應槽產氫量隨 有機負荷之變化---------------------------------------- 59
圖4-8 四種反應槽在高有機負荷單位體積反應槽產氫量隨 有機負荷之變化---------------------------------------- 59
圖4-9 四種反應槽每克污泥產氫量隨有機負荷之變化------- 60
圖4-10 污泥迴流式反應槽產氣率隨有機負荷之變化-------- 60
圖4-11 完全混合式反應槽產氣率隨有機負荷之變化------ 60
圖4-12 無攪拌式反應槽產氣率隨有機負荷之變化---------- 61
圖4-13 柱塞流式反應槽產氫率隨有機負荷之變化---------- 61
圖4-14 四種反應槽產氣率隨有機負荷之變化---------------- 61
圖4-15 污泥迴流式反應槽COD去除率隨有機負荷之變化 65
圖4-16 完全混合式反應槽COD去除率隨有機負荷之變化 65
圖4-17 無攪拌式反應槽COD去除率隨有機負荷之變化----- 65
圖4-18 柱塞流式反應槽COD去除率隨有機負荷之變化----- 66
圖4-19 四種反應槽COD去除率隨有機負荷之變化--------- 66
圖4-20 四種反應槽每克污泥去除COD量隨有機負荷之變化 67
圖4-21 污泥迴流式反應槽進出流鹼度差隨有機負荷之變 化-------------------------------------------------------- 72
圖4-22 完全混合式反應槽進出流鹼度差隨有機負荷之變化 72
圖4-23 無攪拌式反應槽進出流鹼度差隨有機負荷之變化 72
圖4-24 柱塞流式反應槽進出流鹼度差隨有機負荷之變化 73
圖4-25 四種反應槽進出流鹼度差隨有機負荷之變化-------- 73
圖4-26 污泥迴流式反應槽進出流酸度差隨有機負荷之變化 74
圖4-27 完全混合式反應槽進出流酸度差隨有機負荷之變化 74
圖4-28 無攪拌式反應槽進出流酸度差隨有機負荷之變化 74
圖4-29 柱塞流式反應槽進出流酸度差隨有機負荷之變化 75
圖4-30 四種反應槽進出流酸度差隨有機負荷之變化-------- 75
圖4-31 污泥迴流式反應槽出流水氨氮濃度隨有機負荷之變 化------------------------------------------------------- 78
圖4-32 完全混合式反應槽出流水氨氮濃度隨有機負荷之變 化------------------------------------------------------- 79
圖4-33 無攪拌式反應槽出流水氨氮濃度隨有機負荷之變化 79
圖4-34 柱塞流式反應槽出流水氨氮濃度隨有機負荷之變化 79
圖4-35 四種反應槽出流水氨氮濃度隨有機負荷之變化----- 80
圖4-36 四種反應槽出流水凱氏氮濃度隨有機負荷之變化 80
圖4-37 (a) (b)有機負荷10kg-COD/m3.d時,污泥迴流式 反應槽生物污泥之位相差與螢光顯微鏡觀 察菌相圖----------------------------- 85
圖4-38 (a) (b)有機負荷10kg-COD/m3.d時,完全混合式 反應槽生物污泥之位相差與螢光顯微鏡觀 察菌相圖--------------------------------------- 86
圖4-39 (a) (b)有機負荷10kg-COD/m3.d時,無攪拌式反應 槽生物污泥之位相差與螢光顯微鏡觀察菌 相圖------------------------------------------- 88
圖4-40 (a) (b)有機負荷10kg-COD/m3.d時,柱塞流式反應 槽第一段生物污泥之位相差與螢光顯微鏡 觀察菌相圖----------------------------------- 89
圖4-41 (a) (b)有機負荷10kg-COD/m3.d時,柱塞流式反應 槽第四段生物污泥之位相差與螢光顯微鏡 觀察菌相圖----------------------------------- 90
圖4-42 (a) (b)有機負荷60kg-COD/m3.d時,污泥迴流式 反應槽生物污泥之位相差與螢光顯微鏡 觀察菌相圖----------------------------------- 91
圖4-43 (a) (b)有機負荷60kg-COD/m3.d時,完全混合式 反應槽生物污泥之位相差與螢光顯微鏡觀 察菌相圖--------------------------------------- 93
圖4-44 (a) (b)有機負荷60kg-COD/m3.d時,無攪拌式反應 槽生物污泥之位相差與螢光顯微鏡觀察菌 相圖------------------------------------------- 94
圖4-45 (a) (b)有機負荷60kg-COD/m3.d時,柱塞流式反應 槽第一段生物污泥之位相差與螢光顯微鏡 觀察菌相圖----------------------------------- 95
圖4-46 (a) (b)有機負荷60kg-COD/m3.d時,柱塞流式反應 槽第四段生物污泥之位相差與螢光顯微鏡 觀察菌相圖----------------------------------- 96
圖4-47 (a) (b)有機負荷4kg-COD/m3.d及60 kg-COD/m3.d 時,污泥迴流式反應槽生物污泥的掃描式電 子顯微鏡觀察菌相圖-------------------- 98
圖4-48 (a) (b)有機負荷4kg-COD/m3.d及60 kg-COD/m3.d 時,完全混合式反應槽生物污泥的掃描式電 子顯微鏡觀察菌相圖-------------------- 99
圖4-49 (a) (b)有機負荷4kg-COD/m3.d及60 kg-COD/m3.d 時,無攪拌式反應槽生物污泥的掃描式電 子顯微鏡觀察菌相圖-------------------- 100
圖4-50 (a) (b)有機負荷4kg-COD/m3.d及60 kg-COD/m3.d 時,柱塞流式反應槽第一段生物污泥的掃描 式電子顯微鏡觀察菌相圖---------------- 101
圖4-51 (a) (b)有機負荷4kg-COD/m3.d及60 kg-COD/m3.d 時,柱塞流式反應槽第四段生物污泥的掃描 式電子顯微鏡觀察菌相圖---------------- 102
圖4-52 污泥迴流式反應槽之Hanes模式反應動力學迴歸直 線------------------------------------------------------- 110
圖4-53 完全混合式反應槽之Hanes模式反應動力學迴歸直 線------------------------------------------------------ 110
圖4-54 無攪拌式反應槽之Hanes模式反應動力學迴歸直 線------------------------------------------------------- 111
圖4-55 柱塞流式反應槽之Hanes模式反應動力學迴歸直 線------------------------------------------------------- 111
圖4-56 四種反應槽Hanes模式反應動力學迴歸直線之比較 圖------------------------------------------------------- 111
表 目 錄
表2-1 可分解各種基質之產氫菌種類------------------------ 27
表2-2 各種污泥來源之產氫菌種類-------------------------- 28
表2-3 各種厭氧生物廢水生物處理技術評估----------------- 29
表3-1 本研究人工合成廢水的成分與濃度------------------- 41
表3-2 本研究各試程之操作狀況------------------------------ 43
表4-1 四種反應槽在不同操作情況下,厭氧產氫率及產氣 成分之變化情形---------------------------------------- 48
表4-2 四種反應槽之進出流COD濃度、COD去除率及有機 負荷變化----------------------------------------------- 64
表4-3 四種反應槽進出流水之總鹼度------------------------- 70
表4-4 四種反應槽 進出流水之總揮發酸濃度--------------- 71
表4-5 四種反應槽 進出流水NH3-N、TKN-N濃度------------ 78
表4-6 四種反應槽 反應槽中進出流水懸浮性固體物濃度 82
表4-7 各種操作情況下,四種反應槽污泥濃度之變化情形 83
表4-8 各種COD轉換因子之理論值--------------------------- 103
表4-9 各試程COD質量平衡及回收率------------------------- 106
表4-10 在不同操作情況下,以Monod equation為主之四 種反應槽基質利用率計算值--------------------------- 108
表4-11 以Monod equation迴歸求得之四種反應槽反應 動力參數----------------------------------------------- 109
表4-12 四種厭氧產氫反應槽之綜合評估--------------------- 113
一、 中文書目:
白明德(民88)厭氧生物產氫機制與程序操作策略之研究。台南市:國立成功大學環境工程研究所碩士論文。
吳美惠(民76)以生化動力學理論控制消化處理程序。台南市:國立成功大學環境工程研究所碩士論文。
吳先琪、王美雪、施養信、劉泰銘(民89)廢水微生物學。台北市:國立編譯館。
易武宗(民88)厭氧生物旋轉盤法處理含重金屬酚廢水廢水之研究。台中市:國立中興大學環境工程研究所碩士論文。
林明正(民88)CSTR厭氧產氫反應槽之啟動及研究。台中市:逢甲大學土木及水力工程研究所碩士論文。
林明瑞(民78)厭氧流動床法處理含氮、氯-酚類廢水之生物相反應及反應動力學模式之研究。台北市:國立台灣大學土木工程學研究所博
林明瑞(民79)厭氧廢水生物處理程序之探討。工業污染防治,36,150-180。
林秋裕、林明正、陳晉照(民88)中華民國環境工程學會第二十四屆廢水處理技術研討會,33-37。新竹市:國立交通大學環境工程研究所。
林信一(民90) 國科會產氫研究成果發表會,9-1~9-8台南市:國立成功大學環境工程研究所。
洪仁陽(民87)厭氧程序處理工業廢水及都市污水之設計。台北市:國立編譯館
紀長國(民82)厭氧生物濾床之動力學模式。台南市:國立成功大學環境工程研究所博士論文。
涂良君(民88)產氫光合作用細菌之分離與產氫特性。中華民國環境工程學會第二十四屆廢水處理技術研討會,173-177。新竹市:國立交通大學環境工程研究所。
陳晉照、林秋裕、鄭幸雄、曾怡禎、白明德、林明正(民90)國科會產氫研究成果發表會,5-1~5-4。台南市:國立成功大學環境工程研究所。
黃士漢(民83)厭氧處理硝基酚及延散模式之模擬。
黃俊霖、陳晉照、林秋裕、劉文佐(民90)國科會產氫研究成果發表會,3-1~3-23。台南市:國立成功大學環境工程研究所。
經濟部工業局工業污染防制技術服務團(民82) 厭氧處理新技術。台北市:經濟部工業局。
葉安晉(民83) 厭氧旋轉生物圓盤處理有機廢水之研究。台中市:國立中興大學環境工程研究所碩士論文。
鄭幸雄、李東峰、梁德明(民89)中華民國環境工程學會第二十五屆廢水處理技術研討會,388-392。新竹市:國立中山大學環境工程研究所。
鄭幸雄、陳錫添、林秋裕、曾怡禎、李季眉、林信一、林明瑞、劉文佐 (民90)國科會產氫研究成果發表會,1-1~1-9。台南市:國立成功大學環境工程研究所。
鄭幸雄、曾怡禎、白明德(民90)國科會產氫研究成果發表會,3-1~3-3。台南市:國立成功大學環境工程研究所。
蕭景庭(民89)產氫光合作用細菌之生理特性研究。台中市:國立中興大學環境工程研究所碩士論文。
二、英文書目:
Cha, C. G. and Noike, T. (1997). Effect of rapid temperature change and HRT on anaerobic acidogenesis. Water Science Technology.36(6-7),247-253.
Chen, C. C. & Lin, C. Y.(2000) Using Sewage Sludge as seed in an Anaerobic Hydrogen Producing Reactor. Proceedings 25th Wastewater Treatment Technology Conference,Yun-Lin,Taiwan,Dec. 1-2 , 368-372
Clark, J. H.(1978)Performance of a Rotating Biological Contactor under Varying Wastewater Flow, JWPCF, 50, 896.
Diallo,R. & Albertson, O. E.(1961) Volatile Acid by Driect Titration. JWPCF,33,365
Edwards, T. & McBride, B. C.(1975)New Method for the Isolation and Identifition of Methanoogenics Bacteria. Applied Microbial.,29 (4) ,504-545.
Ferguson, J. F., Eis, B. J. & Benjamin, M. M. (1982) Neutralization in Anaerobic Treatment of an Acidic Waste. IWAPR- Specialised Seminar on Anaerobic Treatment,June,Copenhagen,Denmark.
Fiβler, J., Schirra, C., Kohring,G-W. & Giffhoun,F. (1995) Enhanced hydrogen production from aromatic acid by immboilized cells of Rhodopseudomonas
palustris . Applied Microbiol Biotechnology,44,43-46.
Fiβler, J., Schirra, C., Kohring,G-W. & Giffhoun,F. (1994) Hydrogen Production from Aromatic Acids by Rhodopseudomonas paulstris . Applied Microbiol. Biotechnology,41, 395-399.
Fumiaki, T.,Naoki, M.,Kiharu, Y.,Katsushige, H. & Saito-Taki, T. (1995) Enzyme and Microbial Technology, 17,147-150
Girbal, L., Crox, C. ,Vasconcelos, I. & Soucaille, P. (1995) Regulation of metabolic shifts in Clostridium acetobutylicum ATCC824.FEMS, Microbiology Review,17, 287-297.
Gregory, D.P. (1973) The Hydrogen economy. Scientific American, 228,13-21.
Gujer, W. & Zehnder,A. J. B.(1982)Coversion Processes in Anaerobic Digestion.
IAWPR - Seminar on Anaerobic Treatment, June, Copenhagen,Denmark.
Guwy, A.J. Hawkes, F.R., Hawkes, D.L. ,& Rozzi, A.G. (1997) Hydrogen Production in a High rate Fludised bed anaerobic digester. Water Research, 31 (6) ,1291-1298.
Guerrero, L., Omil, F., Mendenz, R. & Lema, J. M. (1999) Anaerobic Hydrolysis and Acidogenesis of Wastewater from Food Industrises with High Content of Organic Water Research 33 (15),3281-3290.
Hallenbeck, P. C. (1983) Immoblized Microorganism for Hydrogen and Ammonia Production. Enzyme. Microbiology Technology, 5, 171-179.
Harper, S. R. & Pohland, F. G. (1986) Recent Development in Hydrogen Management During Anaerobic Biological Wastewater Treatment. Biotechnology and Bioengineering,28,585-602.
Hippe, H., Andreesen, J. R. &Gottchchalk, G. (1992) The Genus Clostridium-Nonmedical.1800-1825, In :Balows, H., Trüper, H.G., Dworkin, M.,Hareder, W., and Schleifer, K.H.(2nded.), The Prokaryotes, Vol.3, Springer-Verlag, New York.
Jiunn-Jyi Lay, Young-Joon Lee and Tatsuya Noike(1999) Feasibility of Biological Hydrogen Production from Organic Fraction of Municipal Solid,Waste Water research,33(11),2579-2586.
Kalia, V. C. & Joshi,A. P.,(1995)Coversion of Waste Biomass (Pea-Shells) into Hydrogen and Mathene Through anaerobic Digestion. Bioresources Technology,
53,165-168.
Kashket, E. R. & Cao, Z.Y. (1995) Clostridial Strain Degeneration. FEMS
Microbiology Review, 17,307-315.
Kataoka, N. ,Miya, A. & Kiriyama, K. (1997) Studies on Hydrogen Production by
Continuous Culture System of Hydrogen-Producing Anaerobic Bacteria. Proc. 8th
International Digestion, 2,383-389.
Kennedy, K. J. & van den Berg, L. (1982a) Anaerobic Digestion of Piggery Waste
using a Stationary Fixed Film Reactor. Agricultural Wate, 4, 151-158.
Kennedy, K. J. & van den Berg, L. (1982b) Thermophilic Downflow Stationary Fixed-Film Reactors for Methane Production from Bean Blanching Waste.
Biotechnology Letters, 4(3),171-176.
Kidby, D. W. & Nwdwell, D. B.(1991) An investigation into Suitability of Biogas
Hydrogen Concentration as a Performance Monitor for Anaerobic Sewage Sludge
Digesters. Water Research,25 (8) ,1007-1012.
Kumar, N. & Das, D.(2000) Emhancement of Hydrogen Production by Enterbacter
cloacae IIT-BT 08. Process Biochemistry, 35,589-593.
Kumar, A. ,Jain, S. R., Sharma, C. B. , Joshi, A. P. & Kalia,V. C. (1995) Increased H2 Production by Immobilized Microorgaisms. World Journal of Microbiology & Biotechnology, 11,156-159.
Lawrence, A. W. & McCarty, P. L. (1965) The Role of Sulfide in Preventing Heavy
Metal Toxicity in Anaerobic Treatment. Journal of Water Pollution Control Fed.,37
( 3 ) , 392-406.
Lay, J. J., Lee, Y. J. & Noike, T. (1999) Feasibility of Biological Hydrogen
Production from Organic Fraction of Muncipal Solid Waste. Water Research, 33
(11) ,2579-2586.
Lay, J. J. (2000)Modeling and Optimization of Anaerobic Digested Sludge Converting
Starch to Hydrogen.Biotechnology and Bioengineering, 68( 3 ) ,269-278.
Lee, Y.J. Miyahara, T. & Noike, T. (1999) Effect of pH on the Microbal Hydrogen
Fermentation. 7th IAWQ Asia-Pacific Regional Conference, 1,215-220.
Li, A. Y. (1984) Anaerobic Processes for Industrial Wastewater Treatment.
Department of Enviormental Engineering, National Chung-Hsing University.
Lin, M. R. & Tseng, S. K. (1993) Effects of pH on Anaerobic Degradtion of
Aromatic Compounds. Journal of Chinese Institute of Environmental
Engineering, 3 (1),27-34.
Lo, K. V., Chen, A. & Liao, P. H. (1990) Anaerobic Treatment of Bakers''s Yeast
Wastewater Ⅱ:Sulfate Removal.Biomass,23,25-37.
Lo, K. V., & Liao, P. H. (1990)Anaerobic Treatment of Baker''s Yeast Wastewater I:
Start-up and Sodium Molybdate Addition.Biomass, 21,207-218
Majizat, A., Mitsunori, Y., Mitsunori,W., Michimasa, N. & Jun''ichiro, M.
(1997)Hydrogen gas production from glucose and its microbial kinetics in anaerobic Systems. Proc.8th International Conf. on Anaerobic Digestion,1,261-267.
McCarty, P. L. (1964a) Anaerobic Waste Treatment Funmentals- Part One
Chemistry and Microbiology. Publics Works, 95,107-112.
McCarty, P. L. (1964b) Anaerobic Waste Treatment Funmentals—Part Two
Enviormental Requirements and Control. Public Works,95,123-126.
McCarty, P. L. (1964c) Anaerobic Waste Treatment Funmentals—Part Three Toxic
Materials and Their Control.Public Works,95,91-94.
Mizuno, O., Dinsdale, R., Hawkes, F.R. & Hawkes, D.L. (2000) Enhancement of
Hydrogen Production from Glucose by Nitrogen Gas Sparging. Bioresources
Technology, 73,59-65.Nakamura, M., Kanbe, H. & Matsumoto, J. (1993) Water Science Technology 28(7),81-88.
Monod, J.(1949)The Growth of Bacterial Cultures. Annual Reviews of Microbiology,
3,371-376.
Mosey, F.E. (1983) Mathematical modeling of the anaerobic digestion process:
Regulatory mechanisms for the formation of short-chain volatile acids from
Glucose. Water Science Technology, 15,209-232.
Nakamura, M., Knabe, H. & Matsumoto, J. (1983) Fundamental Studies on
Hydrogen Production in the Acid-Forming Phase and Its Bacteria in Anaerobic
Treatment Process-The Effects of Solids Retention Time. Water Science Techechnology,28(7),81-88.
Nandi, R. & Sengupta, S. (1998) Microbial Production of Hydrogen:An Overview.
Critical Review in Microbiology. 24(1) ,61-84.
Narenda, K. & Debarata, D. (2000) Enhancement of hydrogen production by EnterbactorII-BT 08 Process Biochemistry. 35, 589-593.
Narenda, K. & Debarata, D. (2001) Electron microscopy of hydrogen producing immobilized E. cloacae IIT-BT 08 on Natural Polymers Hydrogen Energy. 26, 1155-1163.
Odom, J. M. & Wall, J. D. (1983) Photoproduction of H2 from Cellulose by an
Anaerobic Bacteria Co-culture. Applies and Enviormental Microbiology,45
(4) ,1300-1305.
Onoder, H., Miyahara, T. and Nokie, T. (1999) Influence of Ammonia Concentration
on Hydrogen Transformation of Sources. 7th IAWQ Asia-pacific Regional
Conference,2,1139-1145.
Pipyn, L., & Verstraete, W. (1981) Lactate and ethanol as intermediates in two-
Phase anaerobic digestion.Biotechnology and Bioengineering, 13,1145-1154.
Rachman, M. A.,Furutani, Y. & Nakashimada, Y. (1997) Enhanced hydrogen
Production in Altered Mixed Acid Fermentation of Glucose by Enterobacter
aerogenes.Journal of Fermentation and Bioengineering. 83 (4) ,358-363.
Rachman, M.A., Furtani, Y .,Nakashimada, Y., Kakozono, T., & Nishio. N. (1997)
Enhanced Hydrogen Production in Altered Mixed Acid Fermentation of Glucose
by Enterobacter aerogenes.Journal of Fermentation and Bioengineering,83(4)
358-363.
Sarner, E., Hultman, B. G. & erglund, A. E.(1998) Anaerobic Treatment using
Technology for Controlling H2S Toxcity. Tappi Journal,71,41-45.
Sarling, R., Risbey, D. & Poggi-Varaldo, H . M. (1997)Hydrogen Production from Inhibited Anaerobic Composters.Hydrogen Energy,22(6),563-566
Singh, S. P. & Srivastava, S. C. (1991) Isolation of Non-Sulphur Photosynthetic
Bacterial Strain Efficient in Hydrogen Production at Elevated Temperatures.
Journal of Hydrogen Engerg.,16(6),403-405.
Smith, P. H. & Mah, R. A. (1996)Kinetics of Acetate Metabolism during Sludge
Digestion.Applied Microbiology, 14, 368-371.
Sparling, R., Risbey,D., & Poggi-Varaldo, H. M. (1997)Hydrogen Production from
Inhibited Anaerobic Composters. International Journal Hydrogen Energy., 22
(6) ,563-566.
Speece, R. E. & McCarty, P. L.(1964)Nutrient Requirements and Biological Solids
Accumulation in Anaerobic Digestion. Advances in Water Pollution Research,2 ,
305-322.
Spengel, D. B. & Daombak, D. A. (1992) Biokinetic Modeling and Scale-up
Considerations for Rotataing Biological Contactors.Water Enviorment Research.
64(3) ,223-235.
Strong,G.E. & Cord-Ruwisch,R. (1995) An in situ Dissolved-Hydrogen Probe for
Monitoring Anaerobic Digesters under Overload Conditions. Biotechnology and
Bioengineering, 45,63-68.
Taguchi, F., Chang, J. D., Takiguchi, S. & Morimoto, M. (1992), Efficient Hydrogen
Production From Starch by a Bacterium Isolated from Termites. Journal of
Fermentation and Bioengineer, 73(3) ,244-245.
Tanisho, S., & Ishiwata, Y.(1994) Continuous Hydrogen Production from Molasses
By the Bacterium Enterbacter Aerogenes. International Journal of Hydrogen
Energy, 19(10),807-812.
Thauer, P. K.,Jungerman, K., & Derker, K. (1997) Energy conservation in
Chemotrophic anaerobic bacteria. Bacteriological Review,41 (1) ,100-180.
Ueno, Y., Kawai, T., Sato, S., Otsuka, S. & Morimoto, M. (1995) Biological
Production of Hydrogen from Cellulose by Natural Anaerobic Microflora.
Journal of Fermentation and Bioengineering. 79 (4) ,395-397.
Van den Berg, L. & Lentz, C. P. (1997) Food Processing Waste Treatment by
Anaerobic Digestion. Proceeding of the 32nd Industrial Waste Conference,
252-258.
Van Velsen, A. F. M. & Lettinga, G.(1979) Effect of Feed Composition on Digester
Performance . Anaerobic Digestion, 113-130.
Wang, D. I. C. & Cooney, C.L.(1979) Fermentation and Enzyme Technology. New
York:John Wiley & Sons.
Yokoi, H., Tokushige, T., Hirose, J., Hayashi, S., & Takasaki, Y.(1995)
Characteristics of Hydrogen Production by Aciduric Enterbacter aerogenes
Strain HO-39.Journal of Fermentation and Bioengineer,80 (6) ,571-574.
Yoki, H., Maeda, Y., Hirose, J., Hayashi,S.,& Takasaki, Y. (1997) H2 Production
by Immobilized Cells of Clostridium butyricum on Porous Glass Beads.
Biotechnology Techniques,11(6) ,431-433.
Zehnder, A. J. B., Ingvorsen, K., & Marti, T. (1981) Microbiology of Methene
Bacteria. The Second International Symposium on Anaerobic Digestion, 6-11,
Travem,Germany.
Zoetemerey, R.J., Aronolody, P., Cohen, A. & Boelhouwer, C. (1982) Influence of
Temperature on the Anaerobic Acidification of Glucose in A Mixed Culture
Digestion Process. Water Research,16,313-321.
Zoetemeyer, R. J., Arnoldy, P., Cohen A. & Boelhouwer, C. (1982) Influence of temperature on the anaerobic acidfication of glucose in a mixed culture forming part of a two-stage digestion process. Water Resarch 16,313-321
Zwietering, M. H., Jongenburger, I., Rombouts, F. M. & Van’t Riet , K.(1990)
Modeling of Bacteria Growth Curve. Applied and Enviormental Microbiology,
56 (6) ,1875-1881.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top