跳到主要內容

臺灣博碩士論文加值系統

(44.210.21.70) 您好!臺灣時間:2022/08/11 16:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾政廷
論文名稱:國小數學解題歷程及後設認知之研究
指導教授:楊志堅楊志堅引用關係
學位類別:碩士
校院名稱:臺中師範學院
系所名稱:教育測驗統計研究所
學門:教育學門
學類:教育測驗評量學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:73
中文關鍵詞:數學解題後設認知
外文關鍵詞:metacognitionproblem solving
相關次數:
  • 被引用被引用:21
  • 點閱點閱:738
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:13
本研究的目的旨在編製一份具有信度及效度的國小數學加減法文字題解題測驗,研究者藉由這份測驗得以探討受試者在解答國小數學加減法文字題時的數學解題歷程、解題表徵系統及後設認知運作情形。
本研究有兩個結論:一、學生在符號表徵試題的解題能力及後設認知能力有高度相關;在形象表徵試題的解題能力及後設認知能力亦有高度相關。二、學生在三大類、十四小類的符號表徵文字題解題歷程及後設認知均優於形象表徵試題。
The purpose of the study is to compile a test with high reliability and validity for primary school students about addition and subtraction problem solving process. The researcher can investigate the mathematic solving process, the representation system , the metacognition of the students by the test.
There are two conclusions of the research: First, the students’ performance between symbolic problem solving process and metacognition has significant correlation, and the performance between iconic problem solving process and metacongnition has significant correlation, too. Second, the students’ performance between the three series tests, include fourteen items, about the symbolic problem solving process and metacognition has significantly better than the iconic problem solving process and metacongnition.
第壹章 緒論 ……………………………………………………1
第一節 研究動機…………………………………………………1
第二節 研究目的與待答問題……………………………………2
第三節 名詞釋義…………………………………………………3
第貳章 文獻探討…………………………………………………4
第一節 後設認知的意義及評量方法……………………………4
第二節 數學解題之相關研究……………………………………7
第三節 數學加減法文字題………………………………………11
第四節 實作評量…………………………………………………14
第參章 研究方法…………………………………………………18
第一節 研究架構…………………………………………………18
第二節 研究對象…………………………………………………19
第三節 研究工具…………………………………………………20
第肆章 結果與討論………………………………………………24
第一節 評量過程及評量標準……………………………………24
第二節 試題分析…………………………………………………26
第三節 相關分析…………………………………………………34
第伍章 結論與建議………………………………………………45
第一節 結論………………………………………………………45
第二節 研究限制…………………………………………………45
第三節 建議………………………………………………………46
參考文獻 …………………………………………………………48
一、中文部分 ……………………………………………………48
二、英文部分 ……………………………………………………52
附錄 ………………………………………………………………55
附錄一 作答說明及指導語………………………………………55
附錄二 符號表徵試題……………………………………………56
附錄三 符號表徵後設認知試……………………………………59
附錄四 形象表徵試題……………………………………………62
附錄五 形象表徵後設認知試題…………………………………68
參考文獻 
甲、中文部分
王瑋樺(民90)。國小二年級數學學習障礙學生加法文字題解題歷程與補救教學之研究。八十九學年度師範學院教育學術論文發表會論文集,14-16。
古明峰(民88)。加減法文字題語意結構、問題難度及解題關係之探討。新竹師院學報,12,1-25。
林世華(民89)。由多元評量的觀念看傳統評量的角色與功能。科學教育,231,64-66。
李虎雄(民84)。國民教育階段學生基本學習成就評量研究-我們為什麼參加美國馬里蘭州學校實作評量國際共同研究。臺灣教育,538,47-51。
李虎雄,黃長司(民84)。美國馬里蘭州學校實作評量工具在臺灣施測的可行性。科學教育,179,41-49。
李坤崇 (民88) 。多元化教學評量。台北:心理出版社。7。
林美惠(民86)。題目表徵型式與國小二年級學生加減法解題之相關研究。嘉義師範學院國民教育研究所碩士論文。
林清山 譯(1998)。教育心理學-認知取向。台北:遠流出版社,341。
桂怡芬(民85)。紙筆與實作的互補:我的實作評量經驗。教育資料與研究,13,24-35。
翁嘉英(民77)。國小兒童解數學應用問題的認知歷程。國立台灣大學心理學研究所。
涂金堂(1999)。後設認知理論對數學解題教學的啟示。教育研究資訊 ,7(1),122-137。
涂金堂(民85)。國小學生後設認知與數學解題表現之相關研究。國教學報,8,139,141。
涂金堂(民84)。國小學生後設認知、數學焦慮與數表現之相關研究。國立高雄師範大學教育研究所。
孫扶志(民85)。認知解題策略對國小數學成就學童文字題解能力之實驗研究。測驗統計年刊,國立台中師範學院教育測驗評量與統計方法研究發展中心。
張憶壽 譯(民74)。怎樣解題。台北:眾文圖書公司。14-15。
張景媛(民83)。國中生數學學習歷程統整模式之研究。教育心理學報,27,141-174。
張再明(民83)。國小兒童問題結構認知能力及其相關因素之探討研究。嘉義師院學報第八期。3。
張春興(民86)。教育心理學-三化取向的理論與實踐。台北:東華書局 ,214-215。
張振成(民86)。教學評量的新趨勢:實作評量與檔案評量。中等教育,48(6),90-94。
張敏雪(民87)。教室內的實作評量。教育資料文摘,41(6),70-73。
陳文典,陳義勳,李虎雄和簡茂發(民84)。由馬里蘭州的學習成就評量與其在臺灣的試驗結果看-實作評量的功能與運用。科學教育,185,2-11。
陳濱興(民90)。國小數學解題實作評量之及展及其相關研究。國立台中師範學教育測驗統計研究所。
陳昭地(民89)。國科會記者會新聞資料。國立臺灣師範大學科學教育中心。http://140.122.147.172/present/timss.htm
陸正威、王慧豐(民89)。九年一貫數學科「解決問題」基本能力之後設認知評量。測驗與輔導,159。3336-3338。
曾志華(民85)。談國小數學科變通的評量方式。教師之友,37:3,45-53。
彭森明(民85)。實作評量理論與實際。教育資料與研究,9,44-48。
單文經(民87)。評介二種多元評量:真實評量與實作評量。北縣教育,25,46-52。
黃幸美(民85a)。國小數學建構教學的評量方法。教育研究,49,62-67。
黃幸美(民85b)。數學科新課程學習評量之探討。研習資訊,13:5,47-51。
黃世鈺(民84)。潘朵拉的盒子-「後設認知與學習障礙」(Metacognitive and Learning Disability)概述。國教天地,109。11-16。
楊明家(民86)。國小六年級不同解題能力學生在數學解題歷程後設認知行為之比較。國立屏東師範學院國民教育研究所,26-27。
楊宗仁(民81)。認知研究─晤談法之評述。研習資訊,9:1 ,17-21。
劉秋木(民85)。國小數學科教學研究。台北:五南書局。
劉秋木(民78)。科學教育心理學的基礎觀念。花蓮師院學報第三期,14-15。
劉錫麒(民78)。國小高年級學生數學解題歷程及其相關因素的研究。花蓮師院學報第三期,27-29。
鄭美雪,黃長司,黃萬居,朱玲玲(民84)。從臺灣學生在馬里蘭州學校實作評量的表現看我國中小學生的作圖能力。科學教育,184,24-34。
鄭昭明(1994)。認知心理學。台北市:桂冠圖書公司
蔣治邦(民83)。由表徵觀點探討實驗教材數與計算活動的設計。國立嘉義師院八十二學年數學教育研討會論文暨會議實錄彙編。
盧雪梅(民87)。實作評量的應許、難題和挑戰。教育資料與研究,20,1-5。
蕭見文(民85)。數學解題策略之研究。教育學刊,12,367-399。
簡惠燕(民89)。國小學童在科學問題解決過程中創造力與後設認知之相關研究。國立屏東師範學院國民教育研究所。
鍾宜興(民81)。認知心理學上的個別差異。研習資訊,9:4,33-35。
謝淡宜(民85)。小學四、五年級數學資優生及普通生「數學解題」思考歷程之比較。台南師院學報,29,149-191。
顏銘志(民87)國小數學解題教學的省思。國教天地,129,40-45。
蘇義翔(民87)實作評量的理論與啟示。測驗與輔導,149,3099-3012。
乙、英文部分
Anne B. Lewis and Richard E. Mayer. (1987). Students’ miscomprehension of relational statements in arithmetic word problems. Journal of educational psychology,79(4),363-371.
Bruner, J. S.(1966). Toward a theory of instruction. New York:Mcgraw-Hill.
Carpenter, T. P. (1985). Learning to add and subtract : An exercise in problem solving. In E. A. Silver(Ed.) .Teaching and Learning Mathematical Problem Solving: Mutiple Research Perspectives ,17-40. Hillsdale, NJ : Lawarence Erlbaum Associates, Inc.
Charles , R. I, and Lester F. k. (1982). Problem solving : what ,why , and how, paloAlto,Calif. : Dale Seymour publications . Cockcroft, Mathematics Counts, Report of the Committee of Inquriy into Teaching of Mathematics in Schools , HMSO,1982.
Denise D. Cummins (1991). Children’s interpretations of arithmetic word problems. Cognition and instruction,8(3),261-289.
De Corte, E., & Verschaffel, L.(1991). Some factors influencing the solution of addition and subtraction word problems. In K.Durkin and B.Shire(Eds.),Language in mathematical education ,117-130. London:Open University.
Frank K. Lester,Jr.(1985). Meghodological Considerations In Research on Mathematical Problem-Solving Instruction.In Edward A. Silver(Eds.),Teaching and Learning Mathematical Problem Solving:Multiple Research perspectives.Hillsdale,NJ: Lawarence Erlbaum Associates, Inc.
Gerald Kulm. (1994). Mathematics Assessment-what works in the classroom. San Francisco:Jossey-Bass Publishers,88.
Gronlund N. E. (1998). Assessment of student achievement (6th ed).MA: Allyn & Bacon.
Kaput, J. J.(1987a). Representation systems and mathematics. In C. Janvier(Ed.), Problems of representation in the teaching and learning of mathematics , 19-26.Hillsdale, NJ: Erbium.
Kilpatrick, J. (1967). Analyzing the solution of word problems in mathematics: An exploratory study. (Doctoral Dissertation, Stanford University.) University Microfilms Interational.
Kaput, J. J. (1987b). Toward a theory of symbol use in mathematics. In C. Janvier(Ed.), Problems of representation in the teaching and learning of mathematics. 159-196.Hillsdale, NJ: Erlbaum.
Karen C. Fuson and Gordon B. Willis. (1989). Second graders’ use of schematic drawings in solving addition and subtraction word problems. Journal of educational psychology , 81(4),514-520.
Lesh, R., Post, T., & Behr, M.(1987). Representations and translations among representations in mathematics learning and problem solving. In C.Janvier (Ed.), Problems of representation in the teaching and learning of mathematics ,33-40. Hillsdale, NJ: Erlbaum.
Mitchell Rabinowitz & Kenneth E. Wolley.(1995). Much do About Nothing:The Relation Among Computational Skill,Arithmetic Word Problem Comprehension, and Limited Attentional Resources. Cognition and Instruction ,13(1),51-71.
Penelope L. Peterson, Thomas Carpenter & Elizabeth Fennema. (1989). Teachers’ knowledge of students’ knowledge in mathematics problem solving: correlational and case analyses. Journal of educational psychology, 81(4),558-569.
Reily, M. S.(1981). Conceptual and procedural knowledge in development. Unpublished master’s thesis. University of Pittsburgh.
Riley, M. S., Greeno, J, G., & Heller, J, I.(1983). Development of children’s problem-solving ability in arithmetic. In H. P. Ginsberg (Ed.), The development of mathematical thinking ,153-196. New York :Academic Press.
Rowe,H. A. H.(1985). Problem solving and intelligence. Hillsdate, N.J.:Erlbaum.
Dewey(1933), J. (1933) . How we think. Chicago:Henry Regnery.
Stiggins, R. (1987). Design and development of performance assessment. Educational Measurement:Issues and Practice,6 (3),33-42.
Teubla, E. & Nesher P. (1991). Order of mention vs order of events as determining factors in additive word problems : A developmental approach. In K. Durkin and B.Shire (Eds.), Language in mathematical education ,131-139. London: Open University.
Willis, G. B., & Fuson, K. C. (1988). Teaching children to use schematic drawing to solve addition and subtraction word problems. Journal of Educational Psychology,80,192-201.
Yukari Okamoto.(1996). Modeling Children’s Understanding of Quantitative Relations in Test: A Developmental Perspective. Cognition and Instruction ,14(4),409-440.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陸正威、王慧豐(民89)。九年一貫數學科「解決問題」基本能力之後設認知評量。測驗與輔導,159。3336-3338。
2. 陳文典,陳義勳,李虎雄和簡茂發(民84)。由馬里蘭州的學習成就評量與其在臺灣的試驗結果看-實作評量的功能與運用。科學教育,185,2-11。
3. 張敏雪(民87)。教室內的實作評量。教育資料文摘,41(6),70-73。
4. 張再明(民83)。國小兒童問題結構認知能力及其相關因素之探討研究。嘉義師院學報第八期。3。
5. 張景媛(民83)。國中生數學學習歷程統整模式之研究。教育心理學報,27,141-174。
6. 孫扶志(民85)。認知解題策略對國小數學成就學童文字題解能力之實驗研究。測驗統計年刊,國立台中師範學院教育測驗評量與統計方法研究發展中心。
7. 涂金堂(民85)。國小學生後設認知與數學解題表現之相關研究。國教學報,8,139,141。
8. 涂金堂(1999)。後設認知理論對數學解題教學的啟示。教育研究資訊 ,7(1),122-137。
9. 桂怡芬(民85)。紙筆與實作的互補:我的實作評量經驗。教育資料與研究,13,24-35。
10. 李虎雄,黃長司(民84)。美國馬里蘭州學校實作評量工具在臺灣施測的可行性。科學教育,179,41-49。
11. 李虎雄(民84)。國民教育階段學生基本學習成就評量研究-我們為什麼參加美國馬里蘭州學校實作評量國際共同研究。臺灣教育,538,47-51。
12. 林世華(民89)。由多元評量的觀念看傳統評量的角色與功能。科學教育,231,64-66。
13. 古明峰(民88)。加減法文字題語意結構、問題難度及解題關係之探討。新竹師院學報,12,1-25。
14. 曾志華(民85)。談國小數學科變通的評量方式。教師之友,37:3,45-53。
15. 彭森明(民85)。實作評量理論與實際。教育資料與研究,9,44-48。