跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/14 15:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:嚴國晉
論文名稱:半導體製造排程之組合派工法則之研究
論文名稱(外文):Combined Dispatching Rules for Semiconductor Manufacturing Scheduling
指導教授:簡禎富簡禎富引用關係
指導教授(外文):C.F. Chien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
中文關鍵詞:半導體派工法則排程資料挖礦多目標
外文關鍵詞:SemiconductorSchedulingData MiningDispatching Rulemulti-objective
相關次數:
  • 被引用被引用:1
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
近年來,隨著半導體產業的快速成長,其製程與生產規畫問題亦日趨複雜。因此,許多學者便針對這些問題提出了相關的研究,以尋求可以改善生產績效的方法。由於半導體產業的製造流程複雜,使得其有效且可行的排程方法設計十分困難,因此一直很難找到一個方法來達到所有績效最佳的方式。
經由文獻回顧發現,有許多的學者利用系統模擬的方式來實驗不同派工法則對績效指標的影響,利用電腦上建構的模式來進行實驗,以求能找到一個可以有效改進績效的方法。然而,大量的實驗資料往往在有意無意間被人所忽略。因此,我們便需要一個有效率的資料挖礦法則,來處理大量的實驗資料,進而去找出不同派工法則組合出來的影響,以獲得能達到不同需求的派工組合。
在本研究中,利用機台分群的觀念,針對不同機台的工作負荷量來將所有機台的工作群分成三群,分別是高負荷群、中負荷群、和低負荷群,利用這樣的分群來將不同的派工組合運用在其上,並且經過多次的反覆模擬實驗來收集所有的實驗結果,以增加模擬的可信度。最後利用資料挖礦的手法:自我組織映射網路和決策樹,來提供視覺化的結果,以及不同派工法則在多目標的表現結果,以提供決策者來根據這樣的結果來做出符合需求的決定。
Contents
Chapter 1 Introduction 1
1.1 BACKGROUND, SIGNIFICANCE, AND MOTIVATION 1
1.2 RESEARCH AIMS 2
1.3 OVERVIEW OF THIS PAPER 2
Chapter 2 Literature Review 3
2.1 COMMON DISPATCHING RULES 4
2.2 JOB SHOP SCHEDULING PROBLEMS 7
2.2.1 Scheduling system 7
2.2.2 Job shop Scheduling 9
2.3 SIMULATION APPROACH FOR SCHEDULING PROBLEMS 13
2.4 USING SIMULATION FOR SCHEDULING PROBLEMS IN SEMICONDUCTOR FABS 14
2.5 KNOWLEDGE DISCOVERY IN DATABASE AND DATA MINING 14
2.6 A DATA MINING TOOL: SELF-ORGANIZING MAPS (SOM) 16
Chapter 3 The Scheduling Modeling 18
3.1 PROBLEM UNDERSTANDING 20
3.1.1 Problem definition and structuring 20
3.1.2 Data preparation and system understanding 23
System understanding 25
3.2 MODEL CONSTRUCTION 27
3.2.1 Planning 27
3.2.2 Modeling 30
3.2.3 Simulation Model Building 34
3.3 EXPERIMENT AND ANALYSIS 35
3.3.1 Simulation Experiment 35
3.3.2 Data Mining Approach: SOM 37
Chapter 4 An Illustrative Study 38
4.1 SIMULATION MODEL DETAILS 38
4.2 RESULT ANALYSIS WITH DATA MINING APPROACH 43
4.2.1 SOM 43
4.2.2 Decision tree 47
Chapter 5 Conclusion 50
References 51
Albin, S.L. (1982), “On Poisson approximations for superposition of arrival processes in queues”, Management Science, Vol. 28, No. 2, pp. 126-127.
Baker, K.R. (1974), “Introduction to Sequencing and Scheduling”, John Wiley & Sons, Inc.
Banks, J., Carson, J.S., and Nelson, B.L. (1996), “Discrete Event System Simulation”, Prentice-Hall, Upper Saddle River, NJ.
Berry, M. and Linoff, G. (1997), “Data Mining Techniques for Marketing”, Sales and Customer Support, John Wiley and Sons, New York.
Blackstone, J.H., D. T. Phillips, and G.L. Hogg (1982), “A State-of-the-Art Survey of Dispatching Rules for Manufacturing Job Shop Operations”, International Journal of Production Research, Vol. 20, No. 1, pp.27-45.
Dabbas, R. M., (1999), “A New Scheduling Approach Using Combined Dispatching Criteria in Semiconductor Manufacturing Systems,” Ph.D. Dissertation, Department of Industrial and Management Systems Engineering, Arizona State University.
Fayyad, U. M., Djorgovski, S. G., and Weir, N. (1996). “Automating the analysis and cataloging of sky surveys, advances in knowledge discovery and data mining”, Cambridge, MA: MIT Press.
Grave, S.C. (1981),” A Review of Production Scheduling”, Operations Research, Vol. 29, No.4, July-August, pp. 646-675.
Gurney, K. (1998), “An introduction to neural networks”, UCL Press, London.
Hemani, A. and Postula, A. (1990), “Cell placement by self-organization”, Neural Networks, Vol. 3, No. 4, pp. 337-338.
Kiran, A.S. (1998), “Simulation and scheduling”, In Handbook of Simulation, ed. J. Banks, New York: John Wiley & Sons, Inc., pp. 677-717.
Kohonen, T. (1989), “Self Organization and Associative Memory”, 3rd ed. Berlin: Springer-Verlag.
Kohonen, T., Oja, E., Simula, O., Visa, A., and Kangas, J. (1984), ”Engineering applications of the self-organizing map”, Proc. IEEE, Vol.72.
Krajewski, L. J. and Ritzman, L. P. (1996), “Operations Management: Strategy and Analysis”, Addison-Wesley Publishing Company, New York.
Kwak, C. and Yih, Y. (2001), “A simulation comparison of collaboration protocol-based testing models”, International Journal of Production Research, Vol.39, No.13, pp. 2947-2956.
Lu, S. C. H., Ramaswamy, D., and Kumar, P.R. (1994), “Efficient scheduling policies to reduce mean and variance of cycle time in semiconductor manufacturing plants”, IEEE Transactions Semiconductor Manufacturing, pp. 374-388.
Marks, K.M. and Goser, K.F. (1988), “Analysis of VLSI process data based on self-organizing feature maps”, in Proc. Neuro-Nimes, Int. Workshop Neural Networks and Their Applications, Nanterre, France, pp. 337-348.
Mazziotti, B.W., and Horne, Jr., R.E. (1997), “Creating a flexible, simulation-based finite scheduling tools”, In Proceedings of the 1997 Winter Simulation Conference. Ed. S. Andradottir, K.J. Healy, D.H. Withers, and B.L. Nelson, pp. 853-858.
Morito, S., and Lee, K. H. (1997). “Efficient simulation / optimization of dispatching priority with “fake” processing time”. In Proceedings of the 1997 Winter Simulation Conference, ed. S. Andradottir, K.J. Healy, D.H. Withers, and B.L. Nelson, pp. 872-879.
Obaidat, M.S. (1990), “Simulation of Queueing Models in Computer Systems”, in: S. Ozekici (Ed.), Queueing Theory and Applications, Hemisphere, pp.111-151.
Panwalkar, S.S., and Iskander, W. (1977), “A Survey of Scheduling Rules”, Operations Research, Vol. 25, No.1, pp.45-61.
Pinedo, M. (1995), “Scheduling: Theory”, Theory, Algorithms and systems, Prentice Hall, New Jersey.
Pinedo, M. and Chao, X. (1999), “Operations Scheduling with Applications in Manufacturing and Services”, McGraw-Hill, New York.
Pooch, U.W., and Wall, J.A. (1993), “Discrete Event Simulation”, CRC Press, Boca Raton.
Sadun,B. (2000), “Applied System Simulation: a Review Study”, International Journal of Information Sciences, pp. 173-192.
Satake, T., Morikawa, K., Takahashi, K., and Nakamura, N. (1999), “Simulated annealing approach for minimizing the makespan of the general job-shop”, International Journal of Production Economics, pp. 515-522.
Schnettler, A. and Kurra, M. (1993), “ Artificial self-organizing neural network for partial discharge source recognition“, Arch. Fur Elektrotechnik, Vol. 76, pp. 149-154.
Shtub, A. (1999), “Enterprise Resource Planning (ERP): The Dynamics of Operations Management”, Kluwer Academic Publishers, Boston.
Spier, J., and Kempf, K. (1995), “Simulation of emergent behavior in manufacturing systems”, In Proceedings of IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 90-94.
Thiel, M., Schulz, R., and Gmilkowsky, P. (1998), “Simulation based production control in the semiconductor industry”, in Proceedings of the 1998 Winter Simulation Conference. ed. D. J. Medeiros, E.F. Watson, J. S. Carson, and M. S. Manivannan, pp. 1713-1715.
Uzsoy, R., C.Y. Lee, and Martin-Vega, L.A. (1994), “A review of production planning and scheduling models in the semiconductor industry. Part Ⅱ: Shop-floor control,“ IIE Transactions, Vol. 26, No. 5, pp. 44-55.
Wu, J.Z. (2001), “Modeling the Scheduling for Semiconductor Final Test and an Algorithm for Solving the Empirical Problem”, a Thesis Submitted to the Graduate Committee of National Tsing Hua University For the Degree of Master of Science at Department of Industrial Engineering and Engineering Management.
Yasunaga, M., Asai, M., Shibata, K., and Yamada, M. (1992), “Self-organization capability for eliminating defective neurons in neural network LSI’s”. Trans. IE ICE, Vol. J78D-I, No.11, pp.1099-1108.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top