林昇甫、洪成安(1996),類神經網路入門與圖樣辨識,全華科技,臺北。
林大欽(1997),「IC封裝業之短期生產排程之探討」,國立清華大學工業工程與工業管理研究所碩士論文。
林士智(2000),「知識管理理論模式初探─組織取向與資訊科技運用」,私立東海大學工業工程研究所碩士論文。林鼎浩(2000),「建構半導體製程資料挖礦架構及其實證研究」,國立清華大學工業工程與工業管理研究所碩士論文。莊達人(1994),VLSI製造技術,高立,臺北。
施能傑、張榮發(2001),「知識管理與公務部門人力資源管理之研究」,中華決策科學年會暨論文研討會論文集。
楊子江、王美音譯(1997),創新求勝─智價企業論,遠流,臺北。譯自Ikujior Nonaka and Hirotaka Takeuchi。
劉京偉譯(2000),知識管理的第一本書,商周,臺北。著譯自Arthur Andersen Business Cosulting。
薛如珊(2001),「使用自組織映射網路進行資料群集和資訊樣型採擷的資料探勘法」,台灣大學工業工程學研究所碩士論文。簡禎富、林鼎浩、徐紹鐘、彭誠湧(2001),「建構半導體晶圓允收測試資料挖礦架構及其實證研究」,工業工程學刊,第十八卷,第四期,37-48頁。簡禎富、李培瑞(2002),「半導體製程資料特徵萃取與資料挖礦」,資訊管理學報(已接受)。
簡禎富、李培瑞(2001),「現代決策工具:資料挖礦及其在半導體製程資料特徵萃取與事故分析之實證」,中華決策科學學會年會暨論文研討會論文集,77-84頁。
簡禎富、李培瑞(2001), 「半導體製程資料分群、特徵萃取與資料挖礦」,中華民國科技管理研討會論文集,396-401頁。
簡禎富、王鴻儒、徐紹鐘、李培瑞(2002),「決策樹資料挖礦架構及其於半導體製程之實證研究」,科技管理學刊,第七卷,第一期,137-160頁。蘇木春、張孝德(1999),機器學習:類神經網路、模糊系統以及基因演算法則,全華科技,臺北。
SAS 軟體股份有限公司(1999),Enterprise Miner V2.0資料挖礦軟體。
Berry, M., and Linoff, G. (1997), Data Mining Techniques for Marketing, Sales and Customer Support, John Wiley and Sons, New York.
Berry, M., and Linoff, G. (2000), Mastering Data Mining: The Art & Science of Customer Relationship Management, John Wiley &Sons, New York.
Berson, A., Smith, S., and Thearling, K. (2000), Building Data Mining Applications for CRM, McGraw Hill.
Brachman, R. J., Khabaza, T., Kloesgen, W., Piatetsky-Shapiro, G., and Simoudis, E. (1996), “ Mining Business DataBase ”, Communication of ACM, Vol.39, No.11, pp.42- 48.
Breiman, L., Friedman, J. H., Olshen, R. J., and Stone, C. J. (1984), Classification and Regression Trees, Belmont, CA:Wadsworth.
Bursteinas, B., and Long, J.A. (2000), “Tools with Artificial Intelligence”, Proc. IEEE, pp. 274 —280.
Cabena, P., Hadjinian P., Stadler R., Verhess J., and Zanasi A. (1997), Discovering Data Mining From Concept to Implementatation, Prentice Hall PTR, Upper Saddle River, New Jersey.
Cai, Y. (1994), “The application of the artificial neural network in the grading of beer quality”, Proc. WCNN94, Vol.1, pp. 516-520.
Colin, A. (1996), “Algorithm Alley”, DDJ-Patterns and Software Design, June, 1996.
Davenport, T. H., and Prusak, L. (1998), Working Knowledge: How Organizings Manage What They Know, Havard Business School press, Boston.
Deboeck, G., and Kohonen, T. Eds(1998), Visual Exploration in Finance with Self-Organizing Maps. Springer-Verlag, London.
Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996), “The KDD Process for Extracting Useful Knowledge from Volumes of Data ”, Communication of ACM, Vol. 39, No.11, pp.27-34.
Fayyad, U. (1997), “Data Mining and Knowledge Discovery in DataBase: Implication for Scientific Databases ”, Scientific and Statistical Database Management, pp.2-11.
Gandner, M., and Bieker, J. (2000), “Data Mining Solves Tough Semiconductor Manufacturing Problem”, Proc. KDD2000.
Groth and Robert (1998), Data mining: a hands-on approach for business professionals, Prentice Hall.
Gurney, K. (1997), An introduction to neural networks, UCL Press, London.
Han, J. and Kamber, M. (2001), Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers.
Irani, K. B., Cheng, J., Fayyad, U. M., and Qian, Z. (1993), “Applying Machine Learning to Semiconductor Manufacturing”, IEEE Expert, Vol. 8, No.1, pp. 41 —47.
Kasslin, M., Kangas, J., and Simula, O. (1992), “Process state monitoring using self-organizing maps”, in Aleksander, & I., Taylor, J. (Eds), Artificial Neural Network, Vol.2, pp. 1532-1534. North-Holland, Amsterdam.
Kessler, W., Ende, D., Kessler, R. W., and Rosenstiel, W. (1993), “Identification of car body steel by an optical on line system and Kohonen’s self-organizing map”, Proc. SPIE (1588), pp. 64-75.
Kiviluoto, K. (1998), “Predicting bankruptcies with the self-organizing map”, Neurocompt. Vol.21, pp. 191-201.
Kittler, R., and Wang, W. (1999),「資料分析漸露頭角」,中文半導體技術雜誌,79-85頁。
Kleissner, C. (1998), “ Data Mining for the Enterprise ”, IEEE Proc. 31st Annual Hawaii International Conference on System Sciences, Vol. 7, pp.295-304.
Kohonen, T. (1995), Self-Organizing Map, Springer-Verlag, Berlin.
Kohonen, T., Oja, E., Simula, O., Visa, A., and Kangas, J. (1996), “Engineering applications of the self-organizing map”, Proc. IEEE, Vol.84, No.10, pp. 1358-1384.
Lampinen, J., and Oja, E. (1995), “Distortion tolerant pattern recognition based on self-organizing feature extraction”, IEEE Transactions on Neural. Networks Vol.6, pp. 539-547.
Lim, T. S., Loh, W. Y., and Shih, Y. S. (2000), “A Comparison of Prediction Accracy, Complexity, and Training Time of Thirty-three Old and New Classification Algorithms”, Machine Learning, Vol.40, pp. 203-229.
Milne, R., Drummond, M., and Renoux, P. (1998), “Predicting paper making defect on-line using data mining”, Knowledge-Based Systems,Vol.11, pp. 331-338.
Nonaka, I., Toyama, R. & Konno, N. (2001), “SECI, Ba and Leadership: a Unified Model of Dynamic Knowledge Creation”, in Nonaka, I. & Teece, D. J.(eds), Managing industrial knowledge, pp. 13-43, London; Thousand Oaks, Calif.:SAGE.
O’Grady, P. (1999), The Age of Modularity, Adams and Steele Publishers.
Pyle, D. (1999), Data Preparation for Data Mining, Morgan Kaufmann Publishers, San Francisco, California.
Quinlan, J. R. (1986), “Induction of decision tree ”, Machine Learning, Vol.1, pp.81-106.
Quinlan, J. R. (1993), C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco, California.
Safavian, S. R., and Landgrebe, D. (1991), “A Survey of Decision Tree Classifier Methodology”, IEEE Transactions on Systems, Man, and Cybernetics, Vol.21, No.3, pp. 660-674.
Westphal, C., and Blaxton, T. (1998), Data Mining Solutions: methods and tools for solving real-world problems, Wiley, New York.