|
1. Ambekar, S. M. " Optimum length of burn-in for electric equipment" in Proc. Electronics Components Conf., 1982 , 1-7. 2. Bartholomew, D. J. " The Sampling Distribution of an Estimate Arising in Life Testing".Technometrics, 5, 3, 1963, 361-374. 3. Boukai, B. " Bayes sequential procedure for estimation and for determination of burn-in time in a hazard rate model with an unknown change- point". Sequential Analysis, 6(1), 1987, 37-53. 4. Chang, D. S. " Optimal burn-in decision for products with an unimodal failure rate function ". European Journal of Operation Research 126, 2000, 534- 540. 5. Chi,D.-H. and Kuo, W. " Burn-in Optimization under Reliability & Capacity Restriction". IEEE Transactions on Reliability, Vol.38, No.2, 1989 June. 6. Chou, Kuocheng and Tang Kwei " Burn-in Time and Estimation of Change- Point with Weibull-Exponential Mixture Distribution". Decision Sciences, Vol. 23, 1992, 973-990 7. Dishons, M. and Weiss, G. H. " Burn-in programs for repairable systems". IEEE Transactions on Reliability, Vol R-22, No 5, 1973, 265-267. 8. Gallace, L. " Partical Applications of the Weibull Distribution to PowerHybrid Burn-in". RCA Engineer,19, 4, 1973, 58-61. 9. Gera, A. E. and Ashdod, E. " The Modified Exponential-Weibull Distribution for Life-Time Modeling". Proceedings Annual Reliability and Maintainability Symposium, 1997. 10. Gironi, G. and Malberti, P. " A Burn-in Program for Wear-out Unaffected Equipments". Microelectronics and Reliability, 15, 1976, 227-232. 11. Gupta, R. C. and Akman, H. O. " On the reliability studies of a weighted inverse Gaussian model.". Journal of Statistical Planning and Inference 48(1), 1995, 69-83 12. Inoff, S. G. " A model for cost-effective burn-in of systems and subsystems". Personal communication,1981. 13. Kim,K.N. " Optimal Burn-in for Minimizing Cost and Multiobjectives". Microelectronics Reliability 38, 1998, 1577-1583. 14. Kuo, W. " on optimal burn-in modeling and its application to an electronic product". in Proc. 3rd Int. Conf. on Reliability and Maintainability , 1982 October, 517-524. 15. Kuo, W. " Reliability Enhancement Through Optimal Burn-in". IEEE Transaction on Reliability, R-33, 2, 1984, 145-156. 16. Kuo, W. and Chien,W.T. and Kim, T. " Reliability,Yield,and Stress Burn- in". Kluwer Academic Publishers,1998,52-53 17. Lawrence, M. J. " An Investigation of the Burn-in Problem". Technometrics, 8, 1, 61-71. 18. Mi, J. " Bathtub Failure Rate and Upside-Down Bathtub Mean Residual Life ". IEEE Transactions on Reliability, Vol.44, No.3, 1995 September. 19. Mudbolkar, G..S. and Srivastava, D.K. " Exponential Weibull Family for Analyzing Bathtub Failure-Rate Date". IEEE Transactions on Reliability, Vol 42, No 2, 1993 June, 299-302. 20. Nguyen, D.G. and Murthy, D.N.P. " Optimal Burn-in Time to Minimize Costs for Products Sold Under Warranty". IIE Transactions, Vol. 14, No. 3, 1982 September, 167-174. 21. Peck, D. S. and Trapp, O. D. " Accelerated Testing Handbook". Technology Associates, CA, 1987 22. Proshan, F. " Theoretical Explanation of Observed Decreasing Failure Rate". Technometrics,5, 3, 1963, 375-383. 23. Tang, L. C. and Chang, D. S. " Reliability prediction using nondestructive accelerated degradation date:Case study on power supplies". IEEE Transactions on Reliability, Vol.44, No.4, 1995, 562-566. 24. Tang, L. C. , Lu, Y. and Chew, E. P. " Mean Residual Life of lifetime Distributions". IEEE Transactions on Reliability, Vol.48, No.1, 1999 March. 25. Tseng, S. T. , Hamada, M. and Chiao, C. H. " Using degradation data to improve fluorescent lamp reliability". Journal of Quality Technology 27(4), 1995, 363-369. 26. Wadsworth, H. M. and Stephns, K. S. and Godfrey, A. B. " Modern methods for quality control and implementation". New York : Wiley, 1986 27. Washburn, L. " Determination of Optimal Burn-in Time:A Composite criterion ". IEEE Transactions on Reliability, R-19, 4, 1970, 134-140. 28. Zacks, S. " Estimating the shift to wear-out of systems having exponential -Weibull life distributions". Operations Research, 32(3), 1984, 741-749.
|