跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/16 04:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭安君
論文名稱:最小化總成本模式下之最佳預燒時間
指導教授:桑慧敏桑慧敏引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:52
中文關鍵詞:預燒預燒時間目標模式
相關次數:
  • 被引用被引用:2
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在過去的相關文獻中,預燒時間的決定取決於目標模式的建立。目標模式中又以最大化平均殘存壽命模式及最小化總成本模式最廣為應用及最為學者所廣泛探討。最大化平均殘存壽命模式著重的是預燒後''品質的提升",但預燒時間太長不符合經濟效益;最小化總成本模式著重的是預燒後''利潤的提升",但預燒時間過短造成品質相對的低落。
本研究為彌補最小化成本品質低落的缺失,提出兩個修正成本模式將保固期內失效率視為品質之限制並將之加入成本模式之中。
1 緒論                            1
 1.1 研究背................................................1
 1.2 研究動機與目..........................................2
 1.3 研究架................................................3
2 文獻探討                          5
 2.1 元件壽命之機率分......................................7
 2.1 預燒模型目標.........................................11
3 預燒目標分析                       18
 3.1 最大化平均殘存壽命模.................................20
 3.2 最小化總成本模.......................................24
 3.1 最大化平均殘存壽命最小化總成本模式之比...............25
4 成本模式修正                       29
 4.1 修正成本模式一:傳統成本模式加上失效率之限制.........30
 4.2 修正成本模式二:保固期內失效率影響成本模式之銷售.....34
5 結論與建議                       42
 5.1 結論.................................................42
 5.2 未來研究方向之建議...................................45
A 附錄                            46
 A.1.......................................................46
A.2.......................................................48
1.  Ambekar, S. M. " Optimum length of burn-in for electric equipment" in
Proc. Electronics Components Conf., 1982 , 1-7.
2.  Bartholomew, D. J. " The Sampling Distribution of an Estimate Arising in
Life Testing".Technometrics, 5, 3, 1963, 361-374.
3.  Boukai, B. " Bayes sequential procedure for estimation and for
determination of burn-in time in a hazard rate model with an unknown change-
point". Sequential Analysis, 6(1), 1987, 37-53.
4.  Chang, D. S. " Optimal burn-in decision for products with an unimodal
failure rate function ". European Journal of Operation Research 126, 2000, 534-
540.
5.  Chi,D.-H. and Kuo, W. " Burn-in Optimization under Reliability & Capacity
Restriction". IEEE Transactions on Reliability, Vol.38, No.2, 1989 June.
6.  Chou, Kuocheng and Tang Kwei " Burn-in Time and Estimation of Change-
Point with Weibull-Exponential Mixture Distribution". Decision Sciences, Vol.
23, 1992, 973-990
7.  Dishons, M. and Weiss, G. H. " Burn-in programs for repairable systems".
IEEE Transactions on Reliability, Vol R-22, No 5, 1973, 265-267.
8.  Gallace, L. " Partical Applications of the Weibull Distribution to
PowerHybrid Burn-in". RCA Engineer,19, 4, 1973, 58-61.
9.  Gera, A. E. and Ashdod, E. " The Modified Exponential-Weibull Distribution
for Life-Time Modeling". Proceedings Annual Reliability and Maintainability
Symposium, 1997.
10. Gironi, G. and Malberti, P. " A Burn-in Program for Wear-out Unaffected
Equipments".     Microelectronics and Reliability, 15, 1976, 227-232.
11. Gupta, R. C. and Akman, H. O. " On the reliability studies of a weighted
inverse Gaussian model.". Journal of Statistical Planning and Inference 48(1),
1995, 69-83
12. Inoff, S. G. " A model for cost-effective burn-in of systems and
subsystems". Personal communication,1981.
13. Kim,K.N. " Optimal Burn-in for Minimizing Cost and Multiobjectives".
Microelectronics Reliability 38, 1998, 1577-1583.
14. Kuo, W. " on optimal burn-in modeling and its application to an
electronic product". in Proc. 3rd Int. Conf. on Reliability and Maintainability
, 1982 October, 517-524.
15. Kuo, W. " Reliability Enhancement Through Optimal Burn-in". IEEE
Transaction on Reliability, R-33, 2, 1984, 145-156.
16. Kuo, W. and Chien,W.T. and Kim, T. " Reliability,Yield,and Stress Burn-
in". Kluwer Academic Publishers,1998,52-53
17. Lawrence, M. J. " An Investigation of the Burn-in Problem". Technometrics,
8, 1, 61-71.
18. Mi, J. " Bathtub Failure Rate and Upside-Down Bathtub Mean Residual
Life ". IEEE Transactions on Reliability, Vol.44, No.3, 1995 September.
19. Mudbolkar, G..S. and Srivastava, D.K. " Exponential Weibull Family for
Analyzing Bathtub Failure-Rate Date". IEEE Transactions on Reliability, Vol
42, No 2, 1993 June, 299-302.
20. Nguyen, D.G. and Murthy, D.N.P. " Optimal Burn-in Time to Minimize Costs
for Products Sold Under Warranty". IIE Transactions, Vol. 14, No. 3, 1982
September, 167-174.
21. Peck, D. S. and Trapp, O. D. " Accelerated Testing Handbook". Technology
Associates, CA, 1987
22. Proshan, F. " Theoretical Explanation of Observed Decreasing Failure
Rate". Technometrics,5, 3, 1963, 375-383.
23. Tang, L. C. and Chang, D. S. " Reliability prediction using nondestructive
accelerated degradation date:Case study on power supplies". IEEE Transactions
on Reliability, Vol.44, No.4, 1995, 562-566.
24. Tang, L. C. , Lu, Y. and Chew, E. P. " Mean Residual Life of lifetime
Distributions". IEEE Transactions on Reliability, Vol.48, No.1, 1999 March.
25. Tseng, S. T. , Hamada, M. and Chiao, C. H. " Using degradation data to
improve fluorescent lamp reliability". Journal of Quality Technology 27(4),
1995, 363-369.
26. Wadsworth, H. M. and Stephns, K. S. and Godfrey, A. B. " Modern methods
for quality control and implementation". New York : Wiley, 1986
27. Washburn, L. " Determination of Optimal Burn-in Time:A Composite
criterion ". IEEE Transactions on Reliability, R-19, 4, 1970, 134-140.
28. Zacks, S. " Estimating the shift to wear-out of systems having exponential
-Weibull life distributions". Operations Research, 32(3), 1984, 741-749.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top