|
[1] Aiyoshi, E. and Shimizu, K. (1981), “Hierarchical Decentralized Systems and Its New Solution by a Barrier Method”, IEEE Transactions on Systems, Man, and Cybernetics, 11, 444—449. [2] Amouzegar, M. and Moshirvaziri, K. (1998), “A Penalty Method for Linear Bilevel Programming Problems”, Multilevel Optimizations: Algorithms and Applications, Migdalas, A. et al. (eds.), 251—271, Kluwer Academic Publishers, Netherlands. [3] Arbel, A. (1993), “An Interior Multiobjective Linear Programming Algorithm”, Computers and Operations Research, 20, 7, 723—735. [4] Arbel, A. (1994a), “Anchoring Points and Cones of Opportunities in Interior Multiobjective Linear Programming”, Journal of Operational Research Society, 45, 1, 83—96. [5] Arbel, A. (1994b), “Using Efficient Anchoring Points for Generating Search Directions in Interior Multiobjective Linear Programming”, Journal of Operational Research Society, 45, 3, 330—344. [6] Arbel, A. (1995), “An Interior Multiple Objective Primal-Dual Linear Programming Algorithm Using Efficient Anchoring Points”, Journal of Operational Research Society, 46, 1121—1132. [7] Arbel, A. and Korhonen, P. (1996), “Using Aspiration Levels in an Interactive Interior Multiobjective Linear Programming Algorithm”, European Journal of Operational Research, 89, 193—201. [8] Arbel, A (1997), “An Interior Multiobjective Primal-Dual Linear Programming Algorithm Based on Approximated Gradients and Ecient Anchoring Points”, Computers and Operations Research, 24, 4, 353—365. [9] Bard, J. F. and Falk, J. E. (1982), “An Explicit Solution to the Multi-Level Programming Problem”, Computers and Operations Research, 9, 1, 77—100. [10] Bard, J. F. (1983a), “An Efficient Point Algorithm for a Linear Two-Stage Optimization Problem”, Operations Research, 31, 4, 670—684. [11] Bard, J. F. (1983b), “Coordination of a Multidivisional Organization Through Two Levels of Management”, OMEGA, 11, 5, 457—468. [12] Bard, J. F. (1984), “Optimality Conditions for the Bi-Level Programming Problem”, Naval Research Logistics Quarterly, 31, 13—26. [13] Bard, J. F. and Moore, J. T. (1990), “A Branch and Bound Algorithm for the Bilevel Programming Problem”, SIAM J. on Scientific and Statistical Computing, 11, 281—292. [14] Bard, J. F. (1991), “Technical Note: Some Properties of the Bilevel Programming Problem”, Journal of Optimization Theory and Applications, 68, 2, 371—378. [15] Barnes, E. (1986), “A Variation on Karmarkar’s Algorithm for Solving Linear Programming Problem”, Mathematical Programming, 31, 174—182. [16] Ben-Ayed, O. and Blair, C. E. (1990), “Computational Difficulties of Bilevel Linear Programming”, Operations Research, 38, 3, 556—560. [17] Ben-Ayed, O. (1990), “A Bilevel Linear Programming Model Applied to the Tunisian Inter-Regional Network Design Problem”, Revue Tunisienne d’´Economie et de Gestion, 5, 235—279. [18] Ben-Ayed, O., Blair, C. E., Boyce, D. E., and LeBlanc, L. (1992), “Construction of a Real-World Bilevel Linear Programming Model of the Highway Design Problem”, Annals of Operations Research, 34, 219—254. [19] Ben-Ayed, O. (1993), “Bilevel Linear Programming”, Computers and Operations Research, 20, 5, 485—501. [20] Benson, H. P. (1984), “Optimization over the Efficient Set”, Journal of Mathematical Analysis and Applications, 98, 562—580. [21] Benson, H. P. (1991), “An All-Linear Programming Relaxation Algorithm for Optimizing over the Efficient set”, Journal of Global Optimization, 1, 83—104. [22] Benson, H. P. (1992), “A Finite, Nonadjacent Extreme Point Search Algorithm for Optimization over the Efficient Set”, Journal of Optimization Theory and Applications, 73, 47—64. [23] Benson, H. P. and Sayin, S. (1993), “A Face Search Heuristic Algorithm for Optimizing over the Efficient Set”, Naval Research Logistics, 40, 103—116. [24] Benson, H. P. (1993), “A Bisection Extreme Point Search Algorithm for Optimizing over the Efficient Set”, Journal of Global Optimization, 3, 1, 95—111. [25] Benson, H. P. and Sayin, S. (1994), “Optimization over the Efficient Set: Four Special Cases”, Journal of Optimization Theory and Applications, 80, 1, 3—18. [26] Benson, H. P and Lee, D. (1996), “Outcome-Based Algorithm for Optimizing Over the Efficient Set of a Bicriteria Linear Programming Problem”, Journal of Optimization Theory and Applications, 88, 77—105. [27] Benson, H. P. (1998), “Hybrid Approach for Solving Multiple-Objective Linear Programs in Outcome Space”, Journal of Optimization Theory and Applications, 98, 1, 17—35. [28] Bialas, W. F. and Karwan, M. H. (1984), “Two-Level Linear Programming”, Management Science, 30, 1004—1020. [29] Bisschop, J., Candler, W., Duloy, J. H., and O’Mara, G. T. (1982), “The Indus Basin Model: A Special Application of Two-Level Linear Programming”, Mathematical Programming Study, 20, 30—38. [30] Bracken, J. and McGill, J. T. (1973), “Mathematical Programs with Optimization Problems in the Constraints”, Operations Research, 21, 37—44. [31] Brotcorne, L., Labb´e, M., Marcotte, P., and Savard, G. (2000), “A Bilevel Model and Solution Algorithm for a Freight Tari-Setting Problem”, Transportation Science, 34, 3, 289—302. [32] Breiner, A. and Avriel, M. (1999), “Two-Stage Approach for Quantitative Policy Analysis Using Bilevel Programming”, Journal of Optimization Theory and Applications, 100, 1, 15—27. [33] Calamai, P. and Vicente, L. (1994), “Generating Quadratic Bilevel Programming Problems”, ACM Transactions on Mathematical Software, 20, 103—119. [34] Candler, W., Fortuny-Amat, J., and McCarl, B. (1981), “The Potential Role of Multilevel Programming in Agricultural Economics”, American Journal of Agricultural Economics, 63, 3, 521—531. [35] Candler, W. and Townsly, R. (1982), “A Linear Two-Level Programming Problem”, Computers and Operations Research, 9, 59—76. [36] Candler, W. (1988), “A Linear Bilevel Programming Algorithm: A Comment”, Computers and Operations Research, 15, 3, 297—298. [37] Clark, P. A. and Westerberg, A. W. (1990a), “Bilevel Programming for Steady- State Chemical Process Design—I. Fundamentals and Algorithms”, Computers & Chemical Engineering, 14, 87—98. [38] Clark, P. A. and Westerberg, A. W. (1990b), “Bilevel Programming for Steady-State Chemical Process Design—II. Performance Study for Nondegenerate Problems”, Computers & Chemical Engineering, 14, 99—110. [39] Dauer, J. P. and Liu, Y. H. (1990), “Solving Multiple-Objective Linear Programs in Objective Space”, European Journal of Operational Research, 46, 350—357. [40] Dauer, J. P. (1991), “Optimization over the Ecient Set Using an Active Constraint Approach”, Zeitschrift f¨ur Operations Research, 35, 185—195. [41] Dempe, S. (1987), “A Simple Algorithm for the Linear Bilevel Programming Problem”, Optimization, 18, 373—385. [42] Dempe, S. (1995), “Computing Optimal Incentives via Bilevel Programming”, Optimization, 33, 29—42. [43] Deng, X. (1998), “Complexity Issues in Bilevel Linear Programming”, Multilevel Optimization: Algorithms and Applications, Migdalas, A. et al. (eds.), 149—164, Kluwer Academic Publishers, Netherlands. [44] Dessouky, M. I., Ghiassi, M., and Davis, W. J. (1986), “Estimates of the Minimum Nondominated Criterion Values in Multiple-Criteria Decision Making”, Engineering Costs and Production Economics, 10, 95—104. [45] Ecker, J, G. and Kouada, I. A. (1975), “Finding Efficient Points for Linear Multiple Objective Programs”, Mathematical Programming, 8, 375—377. [46] Ecker, J. G. and Song, J. (1994), “Optimizing a Linear Function over an Efficient Set”, Journal of Optimization Theory and Application, 83, 3, 541—563. [47] Feng, S. C. and Puthenpura, S. (1993), Linear Optimization and Extensions: Theory and Algorithms, Prentice-Hall, New York. [48] Fortuny-Amat, J. and McCarl, B. (1981), “A Representation and Economic Interpretation of a Two-Level Programming Problem”, Journal of Operational Research Society, 32, 783—792. [49] F¨ul¨op, J. (1993), “On the Equivalency Between a Linear Bilevel Programming Problem and Linear Optimization over the Efficient Set”, technical report, Computer and Automation Institute, Budapest. [50] Gendreau, M., Marcotte, P., and Savard, G. (1996), “A Hybrid Tabu-Ascent Algorithm for the Linear Bilevel Programming Problem”, Journal of Global Optimization, 8, 217—233. [51] Hansen, P., Jaumard, B., and Savard, G. (1992), “New Branch-and-Bound Rules for Linear Bilevel Programming”, SIAM Journal on Scientific and Statistical Computing, 13, 5, 1194—1217. [52] Haurie, A., Savard, G., and White, D. J. (1990), “A Note on: An Efficient Point Algorithm for a Linear Two-Stage Optimization Problem”, Operations Research, 38, 3, 553—555. [53] Haurie, A., Savard, G., and White, D. J. (1992), “A Two Player Game Model of Power Cogeneration in New England”, IEEE Transactions on Automatic Control, 37, 1451—1456. [54] Horst, R. and Thoai, N. V. (1997), “Utility Function Programs and Optimization over the Efficient Set in Multiple-Objective Decision Making”, Journal of Optimization Theory and Applications, 92, 3, 605—631. [55] Isermann, H. and Steuer, R. E. (1987), “Computational Experience Concerning Payoff Tables and Minimum Criterion Values over the Efficient Set”, European Journal of Operations Research, 33, 91—97. [56] Ishizuka, Y. and Aiyoshi, E. (1992), “Double Penalty Method for Bilevel Optimization Problems”, Annals of Operations Research, 34, 73—88. [57] Jeroslow, R. G. (1985), “The Polynomial Hierarchy and a Simple Model for Competitive Analysis”, Mathematical Programming, 32, 146—164. [58] J´udice, J. J. and Faustino, A. (1988), “The Solution of the Linear Bilevel Programming Problem by Using the Linear Complementary Problem”, Investigac˜ao Operacional, 8, 77—95. [59] J´udice, J. J. and Faustino, A. (1992), “A Sequential LCP Method for Bilevel Linear Programming”, Annals of Operations Research, 34, 89—106. [60] Karmarkar, N. (1984), “A New Polynomial Time Algorithm for Linear Programming”, Combinatorica, 4, 373—395. [61] Kim, T. and Suh, S. (1988), “Toward Developing a National Transportation Planning Model: A Bilevel Programming Approach for Korea”, Annals of Regional Science, 22, 65—80. [62] Korhonen, P., Salo, S., and Steuer. R. E. (1997), “A Heuristic for Estimating NADIR Criterion Values in Multiple Objective Linear Programming”, Operations Research, 45, 5, 751—757. [63] Leblance, L. J. and Boyce, D. E. (1986), “A Bilevel Programming Algorithm for Exact Solution of the Network Design Problem with User-Optimal Flows”, Transportation Research, 20B, 259—265. [64] Liu, B. (1998), “Stackelberg-Nash Equilibrium for Multilevel Programming with Multiple Followers Using Genetic Algorithms”, Computers and Mathematics with Applications, 36, 7, 79—89. [65] Liu, Y. H. and Hart, S. M. (1994), “Characterizing an Optimal Solution to the Linear Bilevel Programming Problem”, European Journal of Operational Research, 73, 1, 164—166. [66] Liu, Y. H. and Hart, S. M. (1995), “Solving a Bilevel Linear Program When the Inner Decision Maker Controls Few Variables”, European Journal of Operational Research, 81, 644—651. [67] Marcotte, P. (1986), “Network Design Problem with Congestion Effects: A Case of Bilevel Programming”, Mathematical Programming, 34, 142—162. [68] Marcotte, P. and Savard, G. (1991), “A Note on the Pareto Optimality of Solutions to the Linear Bilevel Programming Problem”, Computers Operations Research, 18, 4, 355—359. [69] Megiddo, N. and Shub, M. (1989), “Boundary Behavior of Interior Point Algorithms in Linear Programming”, Mathematics of Operations Research, 14, 104—111. [70] Meijboom, B. R. (1986), “A Two-Level Planning Procedure with Respect to Make-or-Buy Decisions, Including Cost Allocations”, European Journal of Operational Research, 23, 301—309. [71] Migdalas, A. (1995), “Bilevel Programming in Trac Planning: Models, Methods and Challenge”, Journal of Global Optimization, 7, 381—405. [72] Monteiro, R. C., Adler, I., and Resende, M. C. (1990), “A Polynomial-Time Primal-Dual Affine Scaling Algorithm for Linear and Convex Quadratic Programming and its Power Series Extension”, Mathematics of Operations Research, 15, 191—214. [73] ¨Onal, H. (1993), “Modified Simplex Approach for Solving Bilevel Linear Programming Problems”, European Journal of Operational Research, 67, 1, 126—135. [74] Philip, J. (1972), “Algorithms for the Vector Maximization Problem”, Mathematical Programming, 2, 207—229. [75] Sayin, S. (1996), “An Algorithm Based on Facial Decomposition for Finding the Efficient Set in Multiple Objective Linear Programming”, Operations Research Letters, 19, 87—94. [76] Sayin, S. (2000), “Optimizing over the Efficient Set Using a Top-Down Search of Faces”, Operations Research, 48, 1, 65—72. [77] Shih, H. S., Lai, Y. J., and Lee, E. S. (1996), “Fuzzy Approach for Multi-level Mathematical Programming Problems”, Computers and Operations Research 23, 1, 73—91. [78] Shih, H. S. and Lee, E. S. (1999), “Fuzzy Multi-level Minimum Cost Flow Problems”, Fuzzy Sets and Systems, 107, 159—176. [79] Shih, H. S. and Lee, E. S. (2000), “Compensatory Fuzzy Multiple Level Decision Making”, Fuzzy Sets and Systems, 114, 71—87. [80] Soismaa, M. (1999), “A Note on Efficient Solutions for the Linear Bilevel Programming Problem”, European Journal of Operational Research, 112, 427—431. [81] Steuer, R. E. (1986), Multiple Criteria Optimization: Theory, Computation, and Application, John Wiley and Sons, New York. [82] Suh, S. and Kim, T. (1992), “Solving Nonlinear Bilevel Programming Models of the Equilibrium Network Design Problem: A Comparative Review”, Annals of Operations Research, 34, 203—218. [83] Tuy, H., Migdalas, A., and V¨arbrand, P. (1993), “A Global Optimization Approach for the Linear Two-Level Program”, Journal of Global Optimization, 3, 1—23. [84] Tuy, H., Migdalas, A., and V¨arbrand, P. (1994), “A Quasiconcave Minimization Method for Solving Linear Two-Level Program”, Journal of Global Optimization, 4, 243—263. [85] Tuy, H. and Ghannadan, S. (1998) “A New Branch and Bound Method for Bilevel Linear Programs”, Multilevel Optimization: Algorithms and Applications, Migdalas, A. et al. (eds.), 231—249, Kluwer Academic Publishers, Netherlands. [86] Tuy, H. (1998), “Bilevel Linear Programming, Multiobjective Programming, and Monotonic Reverse Convex Programming”, Multilevel Optimization: Algorithms and Applications, Migdalas, A. et al. (eds.), 295—314, Kluwer Academic Publishers, Netherlands. [87] ¨Unl¨u, G. (1987), “A Linear Bilevel Programming Algorithm Based on Bicriteria Programming”, Computers and Operations Research, 14, 2, 173—179. [88] Vanderbei, R., Meketon, M., and Freedman, B. (1986), “A Modification of Karmarkar’s Linear Programming Algorithm”, Algorithmica, 1, 395—407. [89] Vicente, L. N., Savard, G., and J´udice, J. (1994), “Descent Approaches for Quadratic Bilevel Programming”, Journal of Optimization Theory and Applications, 81, 379—399. [90] Vicente, L. N. and Calamai, P. H. (1994), “Bilevel and Multilevel Programming: A Bibliography Review”, Journal of Global Optimization, 5, 291—306. [91] Wen, U. P. (1983), “A Solution Procedure for the Resource Control Problem in Two-Level Hierarchical Decision Processes”, Journal of the Chinese Institute of Engineers, 6, 2, 91—97. [92] Wen, U. P. and Jiang, C. F. (1988), “A Multilevel Programming Approach in Commission Rate Setting Problem”, Journal of the Chinese Institute of Engineers, 5, 1, 91—97. [93] Wen, U. P. and Hsu, S. T. (1989), “A Note on A Linear Bi-Level Programming Algorithm Based on Bi-Criterion Programming”, Computers and Operations Research, 11, 1, 79—83. [94] Wen, U. P. and Hsu, S. T. (1991), “Linear Bi-Level Programming Problem─A Review”, Journal of Operational Research Society, 42, 125—133. [95] Wen, U. P. and Hsu, S. T. (1992), “Efficient Solutions for the Linear Bi-Level Programming Problem”, European Journal of Operational Research, 62, 354—362. [96] Wen, U. P. and Lin, S. F. (1996), “Finding an Efficient Solution to Linear Bilevel Programming Problem”, Journal of Global Optimization, 8, 295—306. [97] White, D. J. and Anandalingam, G. (1994), “A Penalty Function Approach for Solving Bi-Level Linear Programs”, Journal of Global Optimization, 3, 397—419. [98] Yu, P. L. (1986), Multiple Criteria Decision Making: Concepts, Techniques and Extensions, Plenum Press, New York. [99] Zeleny, M. (1982), Multiple Criteria Decision Making, McGraw-Hill, New York.
|