跳到主要內容

臺灣博碩士論文加值系統

(35.168.110.128) 您好!臺灣時間:2022/08/16 05:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鐘敏愫
研究生(外文):Min-Su Chung
論文名稱:利用固定化菌體在流體化床反應器進行染料廢水之脫色研究
指導教授:陳國誠陳國誠引用關係
指導教授(外文):Kuo-Cheng Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:流體化床染料廢水固定化菌體
相關次數:
  • 被引用被引用:1
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
先前的研究顯示PVA為一種包埋脫色菌群的良好擔體,並將此固定化菌體顆粒置於流體化床反應器內操作,亦發現在色度去除方面具有很大的發展潛力,但之前的研究局限以單一染料為處理對象,而一般實際染整廠的廢水組成相當複雜,包含多種染料,因此,本研究首先探討PVA固定化菌體顆粒在多種染料同時存在時是否具有脫色能力,並考慮實際應用時額外添加營養源的成本,尋找便宜的替代營養源,實驗結果顯示本系統之固定化菌體顆粒具有分解不同染料的能力,而yeast peptone powder可作為便宜之替代氮源。
再者,將PVA固定化菌體顆粒置於上流式厭氣流體化床反應器中進行混合染料廢水之生物分解,探討操作變數如反應器之床膨脹比率、HRT、入流之染料濃度等因子對分解混合染料廢水的影響。結果顯示最適之操作條件為床膨脹比率=60%、HRT=8小時,而反應器內之固定化菌體顆粒可承受之染料負荷高達15,000 ADMI3/h(7,500 ADMI31/h)且發現固定化菌體顆粒不但可長期連續使用,並具有操作穩定性,有利於實際應用。最後,以實際染整廠廢水為處理對象,結果顯示本研究之流體化床反應器在脫色效率方面(66-73 %)相當於活性污泥法與化學混凝法合併之處理效果(64-67 %),而在COD方面兩階段處理系統與染整廠之活性污泥槽的處理效果差不多,顯示本研究之脫色系統具有相當大的發展潛力。另外,在毒性方面,顯示欲降低厭氧分解產生的代謝產物的毒性,第二個好氣生物反應器為必需的。

目 錄
一、研究緣起 1
二、研究背景與目的 2
2-1國內染整業現況 2
2-1-1簡介 2
2-1-2染整廢水之特性 2
2-1-3廢水處理現況 4
2-2放流水法規 6
2-2-1 ADMI法簡介 6
2-2-2放流水色度標準 8
2-3國內外脫色相關研究 8
2-3-1物理方法 8
2-3-2化學方法 8
2-3-3生物方法 9
2-4不同生物反應器脫色之比較 13
2-4-1生物膜反應器 13
2-4-2流體化床反應器 14
2-4-3厭氧-好氧兩階段反應器 14
2-5染料毒性與分解後代謝物之毒性影響 17
2-6流體化床反應器 19
2-6-1簡介 19
2-6-2流體化床反應器之優點 19
2-6-3流體化床反應器操作參數 20
2-7先前的研究成果 22
2-8研究目的 24
三、材料與方法 26
3-1實驗藥品 26
3-2脫色微生物、污泥與廢水來源 26
3-3固定化顆粒製備 27
3-4反應器裝置 27
3-5染料廢水之色度測定 28
3-6顆粒內菌體濃度之測量 30
3-7掃描式電子顯微鏡(SEM)觀察菌相 31
3-8批次試驗 31
3-8-1人工合成染料廢水之影響 31
3-8-2替代營養源之影響 32
3-9流體化床反應器操作因子之影響 33
3-10實際染整廢水特性之測量 35
四、結果與討論 39
4-1人工合成染料廢水之解析 39
4-1-1單一染料廢水 39
4-1-2混合染料廢水 39
4-2替代營養源之解析 41
4-2-1不同氮源之影響 41
4-2-2不同碳源之影響 42
4-3流體化床反應器生物分解染料廢水之解析 43
4-3-1流體化床反應器啟動 43
4-3-2入流YP濃度對染料生物分解之影響 44
4-3-3床膨脹率對染料生物分解之影響 44
4-3-4 HRT對染料生物分解之影響 45
4-3-5入流染料色度對染料生物分解之影響 46
4-3-6流體化床反應器之操作穩定性 47
4-4實際染整廢水試驗 49
4-5毒性分析 51
4-6固定化顆粒之菌相觀察 53
五、結論 55
六、參考文獻 57
七、圖表 64

[1] 宋欣真、朱昱學,染整業符合87年放流水標準現況剖析,工業污染防治 1997;61:42-55。
[2] 宋欣真、鄭仁川,台灣地區染整業廢水污染防治現況,工業污染防治 1994;49:27-46。
[3] Spadaro JT, Gold MH, Renganathan V. Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol 1992;58:2397-401.
[4] Morais LC, Freitas OM, Goncalves EP, Vasconcelos LT, Gonzalez Beca CG. Reactive dyes removal from wastewaters by adsorption on eucalyptus bark:variables that define process. Wat Res 1999;33:979-88.
[5] Wong PK, Yuen PY. Decolorization and biodegradation of methyl red by Klebsiella pneumoniae RS-13. Wat Res 1996;30:1736-44.
[6] 楊萬發,染整工廠廢水污染防治,經濟部工業局工業污染防治技術服務團、財團法人中國技術服務社,1986。
[7] 87年染整業放流水標準合理性探討綜合報告,紡織工業改進基金專案,1997。
[8] 張鎮南、涂朝陽、商文麟,水質色度分析技術之探討,中國環境工程學刊 1991;1:9-16。
[9] Michaels GB, Lewis DL. Sorption and toxicity of azo and triphenylmethane dye to aquatic microbial populations. Environ Toxicol Chem 1985;4:45-50.
[10] APHA (American Public Health Association). Standard Methods for the Examination of Water and Wastewater. 19th ed., APHA-AWWA-WEF,.Washington. 1995.
[11] Kang SF, Kuo SP. Correlation among indicators in regulating colored industrial wastewaters. Chemosphere 1999;39:1983-96.
[12] Banat IM, Nigam P, Singh D, Marchant R. Microbial decolorization of textile-dye-containting effluents:A review. Biores Technol 1996;58:217-27.
[13] Cripps C, Bumpus JA, Aust SD. Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 1990;56:1114-8.
[14] Knapp JS, Zhang FM, Tapley KN. Decolourisation of Orange II by a wood-rotting fungus. J Chem Technol Biotechnol 1997;69:289-96.
[15] Kim SJ, Shoda M. Batch decolorization of molasses by suspended and immobilized fungus of Geotrichum candidum Dec 1. Journal of Bioscience and Bioengineering 1999;88:586-9.
[16] Sumathi S, Manju BS. Uptake of reactive textile dyes by Aspergillus foetidus. Enzyme Microb Technol 2000;27:347-55.
[17] Mou DG, Lim KK ,Shen HP. Microbial agents for decolorization of dye wastewater. Biotechnol Adv 1991;9:613-22.
[18] Chung KT, Stevens Jr SE. Degradation of azo dyes by environmental microorganisms and helminthes. Environ Toxicol Chem 1993;12: 2121-32.
[19] Hu TL. Degradation of azo dye RP2B by Pseudomonas luteola. Wat Sci Tech 1998;38:299-306.
[20] Heiss GS, Goean B, Dabbs ER. Colning of DNA from a Rhodococcus strain conferring the ability to decolorize sulfonate azo dyes. FEMS Microbiol Lett 1992;99:221-6.
[21] Chen KC, Huang JY, Wu JY, Houng JY. Microbial decolorization of azo dyes by Proteus mirabilis. Journal of Industrial Microbiology & Biotechnology 1999;23: 686-90.
[22] Pagga U, Brown D. The degradation of dyestuffs. Part Ⅱ Behaviour of dyestuff in aerobic biodegradation tests. Chemosphere 1986;15:479-91.
[23] Douch PGC, Blair SSB. The metabolism of foreign compound in the cestode, Monieziz expansa, and the nematode. Ascaris lumbricoides var suum. Xemobiotica 1975;5:279-92.
[24] Chung KT, Stevens Jr SE. The reduction of azo dyes by the intestinal microflora. Crit Rev Microbiol 1992;18:175-90.
[25] 郭泰興、陳柏庭、趙雲鵬、張嘉修,基因改質大腸桿菌對Reactive Red 22褪色效應之研究,第四屆生化研討會 1999:173-6。
[26] 林佳渝、高維枕、張嘉修,以基因重組技術建構染料廢水褪色菌種,第二十五屆廢水研討會 2000;22-7。
[27] Rafii F, Coleman T. Coloning and expression in Escherichia coli of an azoreductase gene from Clostridium perfringens and comparison with azoreductase genes from other bacteria. J Basic Microbiol 1999;39:29-35.
[28] Catliell CM, Barclay SJ, Naidoo N, Buckley CA, Mulholland DA, Senior E. Microbial decolorization of a reactive azo dye under anaerobic conditions. Water SA 1995;21:61-9.
[29] Nigam P, Mullan GM, Banat IM, Marchant R. Decolourisation of effluent from the textile industry by a microbial consortium. Biotechnol Lett 1996;18:117-20.
[30] Nigam P, Banat IM, Singh D, Marchant R. Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochem 1996;31:435-42.
[31] Haug W, Schmidt A, Nortemann B, Hempel DC, Stolz A, Knackmuss HJ. Mineralization of the sulfonated azo dye mordant yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium. Appl Environ Microbiol 1991;57:3144-9.
[32] Livernoche D, Jurasek L, Desrochers M, Dorica J. Removal of color from kraft mill wastewaters with cultures of white-rot fungi and immobilized mycelium of Coriolus Versicolor. Biotechnol Bioeng 1983;25:2055-65.
[33] Oxspring DA, McMullan G, Smyth WF, Marchant R. Decolorization and metabolism of reactive textile dye, Remazol-Black-B, by an immobilized microbial consortium, Biotechnol Lett 1996;18:527-30.
[34] 楊文彬、吳建一、黃章程、陳國誠,廢水生物脫色技術之開發(Ⅱ)固定化菌體對於偶氮染料RED RBN的脫色研究,第二十四屆廢水處理技術研討會論文集 1999:211-6。
[35] Cammarota MC, SantAnna GL. Decolorization of kraft bleach plant E1 stage effluent in a fungal bioreactor. Environ Technol 1992;13:65-72.
[36] Yang FC, Yu JT. Development of a bioreactor system using an immobilized white rot fungus for decolorization. Bioprocess Eng 1996;16:9-11.
[37] Marwaha SS, Grover R, Prakash C, Kennedy JF. Continuous biobleaching of black liquor from the pulp and papr industry using an immobilized cell system. J Chem Thchnol Biotechnol 1998;73:292-6.
[38] Beydilli M I, Pavlostathis SG, Tincher WC. Decolorization and toxicity screening of selected reactive azo dyes under methanogenic conditions. Wat Sci Tech 1998;38:225-32.
[39] Jian H, Huang X, Li S, Zhou S, Cen Y. A pilot plant using immobilized cells for dye removal from dye manufacturing wastes. Resour Conserv Recycl 1994;11:189-95.
[40] Pallerla S, Chambers R P. Characterization of a Ca-alginate-immobilized Trametes versicolor bioreactor for decolorization and AOX reduction of paper mill effluents. Bioresource Technology 1997;60:1-8.
[41] Zhang FM, Knapp JS, Tapley KN. Decolourisation of cotton bleaching effluent in a continuous fluidized-bed bioreactor using wood rotting fungus. Biotechnol Lett 1998;20:717-23.
[42] Zhang FM, Knapp JS, Tapley KN. Development of bioreactor systems for decolorization of Orange Ⅱ using white rot fungus. Enzyme Microb Technol 1999;24:48-53.
[43] Pak D, Chang W. Decolorizing dye wastewater with low temperature catalytic oxidation. Wat Sci Tech 1999;40:115-21.
[44] Walker R. The metabolism of azo compounds:A review of the literature. Food Cosmet Toxicol 1970;8:659-76.
[45] Brown D, Hamburger B. The degradation of dyestuffs: part Ⅲ-investigations of their ultimate degradability. Chemosphere 1987;16:1539-53.
[46] Field JA, Stams AJM, Xato M, Schraa G. Enhanced biodegradation of aromatic pollutants in co-cultures of anaerobic and aerobic bacterial consortia. Antonie van Leeuwenhoek 1995;67:47-77.
[47] Panswad T, Luangdilok W. Decolorization of reactive dyes with different molecular structures under different environmental conditions. Wat Res 2000; 34:4177-84.
[48] Panswad T, Iamsamer K, Anotai J. Decolorization of azo-reactive dye by polyphosphate- and glycogen-accumulating organisms in an anaerobic-aerobic sequencing batch reactor. Bioresource technology 2001;76:151-9.
[49] Seshadri S, Bishop PL. Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Manag 1994;14:127-37.
[50] An H, Qian Y, Gu X, Tang WZ. Biological treatment of dye wastewaters using an anaerobic-oxic system. Chemosphere 1996;33:2533-42.
[51] Neill CO, Hawkes FR, Hawkes DL, Esteves S, Wilcox SJ. Anaerobic-aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye. Wat Res 2000;34:2355-61.
[52] Tarpley WG, Miller JA, Miller EC. Adducts from the reaction of N-benzyloxy-N-methyl-4-aminoazobenzene with deoxyguanosine or DNA in vitro and from hepatic DNA of mice treated with N-methyl-or N, N-dimethyl-4-aminoazobenzene. Cancer Res 1980;40:2493-9.
[53] Hartman CP, Fulk GE, Andrews AW. Azo reduction of trypan blue to a known carcinogen by a cell-free extract of a human intestinal anaerobe. Mutat Res 1978;58:125.
[54] van der Zee FP, Bouwman RHM, Strik DPBTB, Lettinga G, Field JA. Application of Redox Mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnol Bioeng 2001;75:691-701.
[55] Andrianova MM. Carcinogenic properties of the food dyes Amaranth, SXPurple and 4R Purple. Vopr Pitan 1970;29:61.
[56] Donlon B, Razo-Flores E, Luijten M, Swarts H, Lettinga G, Field J. Detoxification and partial mineralization of the azo dye mordant orange 1 in a continuous upflow anaerobic sludge-blanket reactor. Appl Microbiol Biotechnol 1997;47:83-90.
[57] Bonser GM, Bradshaw L, Clayson DB, Jull JW. A further study of the carcinogenic properties of ortho-hydroxy-amines and related compounds by bladder implantation in the mouse. Br J Cancer 1956;10:539.
[58] Yu H, Rittmann BE. Predicting bed expansion and phase holdups for three-phase fluidized-bed reactors with and without biofilm. Wat Res 1997;31:2604-16.
[59] 黃森元,厭氣流體化床(AFB)廢水處理技術,八十五年度落實本土化高科技污染防治設備技術發表會 1996:13-20。
[60] Diez V, García PA, Polanco FF. Evaluation of methanogenic kinetics in an anaerobic fluidized bed reactor (AFBR). Process Biochem 1999;34:213-9.
[61] 陳俊廷,利用流體化床反應器進行固定化菌體的染料脫色之研究,國立清華大學化學工程系碩士論文 2001。
[62] Zhang F, Yu J. Decolorization of Acid Violet 7 with complex pellets of white rot fungus and activated carbon. Bioprocess Eng 2000;23:295-301.
[63] Blanco VD, Encina PAG, Polanco FF. Effect of biofilm growth, gas and liquid velocities on the expansion of an anaerobic fluidized bed reactor (AFBB). Wat Res 1995;29:1649-54.
[64] 黃文聰,染料之生物脫色研究,國立清華大學化學工程系碩士論文 1996。
[65] 黃章程,固定化菌體對於偶氮染料Red RBN的脫色研究,國立清華大學化學工程系碩士論文 1997。
[66] 楊文彬,偶氮染料於PVA固定化菌體顆粒內的擴散特性及生物分解動力學研究,國立清華大學化學工程系碩士論文 2000。
[67] Chen KC, Lin YF. Immobilization of microorganisms or enzymes in polyvinyl alcohol beads. United States Patent No. 5290693. 1994.
[68] Pierce Chemical Company. BCA Protein Assay Kit. U. S. Patent No.4839295. 1997.
[69] Calderón DG, Buffiere P, Moletta R, Elmaleh S. Comparison of three granular support materials for anaerobic fluidized bed systems. Biotechnol Lett 1996; 18:731-6.
[70] Farre ML, Garcia MJ, Tirapu L, Ginebreda A, Barcelo D. Wastewater toxicity screening of non-ionic surfactants by Toxalert® and Microtox® bioluminescence inhibition assays. Anal Chim Acta 2001;427:181-9.
[71] Indorato AM, snyder KB, Usinowicz PJ. Toxicity screening using MicrotoxTM analyzer. Drug Chem Toxicol 1984;1:37-53.
[72] Ribo JM, Kaiser KLE. Photobacterium phosphoreum toxicity bioassay.Ⅰ. Test procedures and applications. Tox Assess 1987;2:305-23.
[73] Qureshi AA, Coleman RN, Paran JH. Evaluation and refinement of the Microtox test for use in toxicity screening. In Toxicity Screening Procedures using Bacterial Systems(Edited by Liu D. and Dutka B. J.), 1-22, Marcel Dekker, New York, 1984.
[74] Vanhala, PT, Ahtiainen JH. Soil respiration, ATP content, and Photbacterium toxicity test as indicators of metal pollution in soil. Environ Toxicol Water Qual 1994;9:115-21.
[75] Lankford PW, W. Wesley Eckenfelder, Jr. (Eds.) Toxicity reduction in industrial effluents. Van Nostrand Reinhold, New York, USA, 1990.
[76] Podgornik H, Grgic I, Perdih A. Decolorization rate of dyes using lignin peroxidases of Phanerochaete chrysosporium. Chemosphere 1999;38:1353-9.
[77] Kapdan IK, Kargi F, McMullan G, Marchant R. Decolorization of textile dyestuffs by a mixed bacterial consortium. Biotechnol Lett 2000;22:1179-81.
[78] Laing IG. The impact of effluent regulations on the dyeing industry. Rew Prog Coloration 1991;21:56-71.
[79] FitzGerald SW, Bishop PL. Two stage anaerobic/aerobic treatment of sulfonated azo dyes. J Environ Sci Health 1995;A30:1251-76.
[80] Asami M, Suzuki N, Nakanishi J. Aquatic toxicity emission from Tokyo: wastewater measured using marine luminescent bacterium, Photobacterium Phosphoreum. Wat Sci Tech 1996;33:121-8.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top