跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/15 05:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周進順
研究生(外文):Ching-Shun Chou
論文名稱:鈀膠體系統直接電鍍速率促進之研究
論文名稱(外文):The Enhanced Study of Direct Copper Plating Rate for Pd Colloidal System
指導教授:萬其超萬其超引用關係王詠雲
指導教授(外文):Chi-Chao WanYun-Yung Wang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:108
中文關鍵詞:鈀膠體直接電鍍速率促進
外文關鍵詞:Palladium ColloidDirect PlatingRate Promotion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:426
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
非導體表面金屬化的技術,針對印刷電路板工業而言,可分為無電鍍(Autocatalytic Electroless Plating)與直接電鍍(Direct Plating),前者的反應機制,乃利用催化金屬(如鈀、鉑、銀等)促使還原劑在非導體表面吸附與分解,並引發金屬還原於非導體表面;後者則可分為二項,其一為降低非導體的表面電阻,例如碳/石墨或導電高分子系統,其二是利用化學反應的橋聯配位方式,使得電子傳遞更為順利,因此可以進行直接電鍍,例如錫鈀膠體系統。
本研究以錫鈀膠體製程中的硫化程序為出發點,利用高分子鈀膠體經過硫化處理而無明顯速率促進的結果,確定硫化架橋作用的發揮必須伴隨〝錫〞的存在,因此證實錫具有助催化作用,會在錫鈀合金狀態中改變電子組態,使硫化後的電子傳遞速率更快。在促進程序的應用方面,發現乾燥氧化的方式會明顯促進直接電鍍速率,因此以實驗分析的方式,將乾燥氧化的操作條件定為高溫乾燥(75℃,2 min)。
經過高溫乾燥後的電鍍速率促進能力,錫鈀膠體製程約為2~4倍,而高分子鈀膠體製程比標準程序快約10倍,由於錫鈀膠體中的錫會因高溫乾燥而氧化成阻礙電子傳遞的二氧化錫(SnO2),因此這兩種鈀膠體製程才產生不同的速率促進結果。另一方面,高溫乾燥的促進作用,經過實驗證實並非是導電度傳導機制所影響,而藉由ESCA判定原子氧化態的分析結果,瞭解高溫乾燥處理所產生的化學吸附氧化鈀(PdsOc)是速率促進的主因,因此推論PdsOc中的氧也是利用類似離子架橋的方式傳遞電子,才會達到速率促進的效果,進一步更利用脈衝電鍍法,量測因高溫乾燥處理所產生靜止電位的偏移並再次證實高溫乾燥的速率促進能力。
目錄
摘要
誌謝
目錄
圖目錄
表目錄
第壹章 緒論
1-1 前言
1-2 傳統鍍通孔製程及其發展瓶頸
1-3 直接電鍍製程
第貳章 文獻回顧
2-1 錫鈀膠體與高分子鈀膠體之直接電鍍
2-2 不同材料之催化金屬
2-3 異相觸媒反應
2-4 架橋劑之作用
2-5 速化處理及硫化程序之應用
2-6 鍍液對硫-鈀直接電鍍系統之影響
2-7 鈀系列直接電鍍鎳之探討
2-8 鈀膠體系統直接電鍍之反應機制
2-9 靜止電位(rest potential)之意義
2-10 氧化鈀之鍵結狀態及催化活性
2-11 研究動機
第參章 研究方法
3-1 實驗使用儀器
3-2 實驗藥品
3-3 實驗設計裝置
3-4 實驗流程及藥液配製
第肆章 直接電鍍前導實驗
4-1 速化液對直接電鍍之再現性分析
4-2 錫鈀膠體程序之直接電鍍
4-3 促進劑應用在純鈀活化層電鍍之可行性
4-4 單元總結
第伍章 乾燥氧化對錫鈀膠體直接電鍍之影響
5-1 不同乾燥方式對電鍍速率之促進效果
5-2 乾燥溫度及時間對促進效果之影響
5-3乾燥氧化應用於錫鈀膠體製程各階段之直接電鍍
5-4 單元總結
第陸章 高溫乾燥對鈀膠體促進作用之探討
6-1 高溫乾燥對高分子鈀膠體鍍層擴張阻力之影響
6-2 高分子鈀膠體經過促進程序之電鍍速率變化
6-3 高溫乾燥具有速率促進能力之探討
6-4 單元總結
第柒章 結論
第捌章 參考文獻
  參考文獻
1. 鍾俐娟,『多層印刷電路板市埸與技術發展現況』,工業材料,118,57 (1996).
2. 楊新登,『Crimson Process-再談直接鍍孔』,電路板資訊,60,78 (1993).
3. S. Sugihara, A. Iwasawa, K. Onose, and J. Yamaki, “Study of Electroless Plating on Plastic Surface”, J. Applied Electochem., 20, 63 (1996).
4. H. Nakahara and J. D. Browne, “Direct Metallization Technology”, in Printed Circuits Handbook, 4th ed., C. F. Coombs, Editor, p. 1910, McGraw-Hill, New York (1995).
5. W. Metzger, J. Hupe, and W. Kronenberg, “New Process for Direct Through-Hole Plating of Printed Circuit Boards”, Plat. Surf Finish, 77, 28 (1990).
6. B. Bressel, H. Meyer, W. Meyer, and K. Gedrat, “Process for Metallization of a Nonconductor Surface, Especially on a Circuit Board Having preexisting Copper Surfaces”, U.S. Patent 5,183,522 (1993).
7. 吳錫昭,『黑孔製程』,電路板資訊,31,67 (1990).
8. F. Polakovic and A. M. Piano (Olin Hunt, Black Hole), “Process for Preparing the Through Holes of a Printed Wiring Board for Electroplating”, U.S. Patent 4,622,108 (1986).
9. A. M. Piano and R. Galvez (Olin Hunt, Black Hole), “Process for Preparing the Through Hole Walls of a Printed Wiring Board for Electroplating”, U.S. Patent 4,897,164 (1990).
10. A. M. Piano and R. Galvez (Olin, Black Hole), “Process for Preparing Nonconductive Substrates”, U.S. Patent 4,004,153 (1991).
11. P. Pendleton (Olin Hunt, Black Hole), “Process for Preparing Nonconductive Substrates”, U.S. Patent 5,015,339 (1991).
12. C. M. Randolph and B. F. Nelsen (Olin, Black Hole), “Process for Preparing a Nonconductive Substrates for Electroplating”, U.S. Patent 5,139,642 (1992).
13. K. L. Minten and G. Pismennaya, (Olin Hunt, Black Hole), “Liquid Carbon Black Dispersion”, U.S. Patent 4,724,005 (1988).
14. H. Nakahara, “Direct Metallization Technology, Part Ⅱ”, Printed Circuit Fabrication, Nov., 16 (1992).
15. C. E. Thorn, F. Polakovic, and C. A. Mosolf (Electrochemicals, Shadow), “Composition and Process for Preparing a Non-conductive Substrate for Electroplating”, U.S. Patent 5,389,270 (1995).
16. D. A. Radovsky and B. J. Ronkese (IBM), “Method of Electroplating on a Dielectric Base”, U.S. Patent 3,099,608 (1963).
17. 姚小喬,『EE — 1製程』,電路板資訊,13,30 (1989).
18. D. M. Morrissey, P. E. Takach, and R. J. Zeblisky (Kollmorgen), “Method for Electroplating Non-metallic Surfaces”, U.S. Patent 4,683,036 (1987).
19. 胡庶鼎,『非化學銅時代的到來』,電路板資訊,60,106 (1993).
20. K. Okabayashi (STS), “Method for Directly Electroplating a Dielectric Substrate and Plated Substrate so Produced”, U.S. Patent 5,071,517 (1991).
21. K. Okabayashi (E. R. Harnden), “Simplified Method for Direct Electroplating of Dielectric Substrates”, U.S. Patent 5,262,042 (1993).
22. K. Okabayashi (E. R. Harnden), “Simplified Method for Direct Electroplating of Acrylic or Epoxy Containing Dielectric Substrates”, U.S. Patent 5,268,088 (1993).
23. 楊新登,『孔壁直接鍍銅法』,電路板資訊,45,79 (1991).
24. 楊新登,『再談直接鍍孔』,電路板資訊,65,78 (1993).
25. M. Gulla, D. F. Foust, and G. K. Philipose (Shipley, Crimson), “Electroplating Process”, U.S. Patent 4,810,333 (1989).
26. J. J. Bladon (Shipley, Crimson), “Pretreatment for Electroplating Process”, U.S. Patent 4,895,739 (1990).
27. J. J. Bladon (Shipley, Crimson), “Electroplating Process”, U.S. Patent 4,919,768 (1990).
28. J. J. Bladon, J. N. Robinson, and M. Rousseau (Shipley, Crimson), “Electroplating Process”, U.S. Patent 4,952,286 (1990).
29. J. J. Bladon (Shipley, Crimson), “Electroplating Process”, U.S. Patent 5,007,990 (1991).
30. J. J. Bladon (Shipley, Crimson), “Printed Circuit Board”, U.S. Patent 5,017,742 (1991).
31. J. J. Bladon (Shipley, Crimson), “Electroplating Process and Composition”, U.S. Patent 5,207,888 (1993).
32. J. P. Burress (Shipley, Crimson), “Electroplating Process”, U.S. Patent 5,238,550 (1993).
33. M. Gulla (Shipley, Crimson), “Additive Plating Process”, U.S. Patent 5,262,041 (1993).
34. J. J. Bladon (Shipley, Crimson), “Electroplating Process and Composition”, U.S. Patent 5,276,290 (1994).
35. J. J. Bladon, W. Sonnenberg, I. Sinitskaya, J. P. Burress, and C. P. Esposito (Shipley, Crimson), “Electroplating Proces ”, U.S. Patent 5,425,873 (1995).
36. H. Meyer, R. J. Nichols, D. Schroer, and L. Stamp, “The Use of Conducting Polymers and Colloids in the Though Hole Plating of Printed Circuit Boards”, Electrochimica Acta., 39, 1325 (1994).
37. K. H. Dietz, “Review of Direct Plate Processes & Assessment of the Impact on Primary Imaging of Printed Wiring Boards”, Plat. Surf. Finish., 82, 60 (1995).
38. 楊欽雄,『非導體表面直接電鍍銅之研究』,國立清華大學博士論文(1998).
39. C. R. Shipley (Shipley), “Method of Electroless deposition on a Substrate and Catalyst Solution Therefor”, U.S. Patent 3,011,920 (1961).
40. Y. H. Wang, and C. C. Wan, “The Kinetics of PdCl2/SnCl2 Activating Solutions for Electroless Plating”, Plat. Surf Finish., 89, 59 (1982).
41. A. Rantell, and A. Holtzman, “Mixed Stannous Chloride-Palladium Chloride Activators-A Study of Their Formation and Nature”, Plating, 61, 623 (1974).
42. T. Osaka, and H. Nagasaka, “An Electron Diffraction Study on Mixed PdCl2/SnCl2 Catalysts for Electroless Plating”, J. Electrochem. Soc, 127, 2343 (1980).
43. R. L. Cohen, and K. W. West, “Generative and Stabilizing Process in Tin-Palladium Sol Sensitizers”, J. Electrochem. Soc., 120, 502 (1973).
44. H. Meyer, R. J. Nichols, D. Schroer, and L. Stamp, “The Use of Conducting Polymers and Colloids in the Though Hole Plating of Printed Circuit Boards”, Electrochimica Acta., 39, 1325 (1994).
45. Stamp, “Process for the Metallization of Nonconductive Substrates with Elimination of Electroless Metallization”, U.S. Patent No. 5,421,989 (1995).
46. H. Meyer, R. J. Nichols, D. Schroer, and L. Stamp, “The Use of Conducting Polymers and Colloids in the Though Hole Plating of Printed Circuit Boards”, Electrochimica Acta., 39, 1325 (1994).
47. I. Ohno, O. Wakabayashi, and S. Haruyama, “Anodic Oxidation of Reductants in Electroless Plating”, J. Electrochem. Soc., 132, 2323(1985).
48. 張中良,『非導體表面之金屬化』,工業材料,112,86 (1996).
49. J. Horkans, J. Kim, C. McGrath, and L. T. Romankiw, “A TEM Study of the Effect of Accelerators on Pd-Sn Colloidal Catalysts and on the Initiation of Electroless Cu Deposition on Epoxy”, J. Electrochem. Soc., 134, 300 (1987).
50. A. M. Mance, “A new Catalyst Process for Applying Metal Patterns”, J. Electrochem. Soc., 139, 724 (1992).
51. C. G. Hill, An Introduction to Chemical Engineering Kinetics & Reactor Design, Chap. 6, Wiley, New York (1977).
52. 吳榮宗,『工業觸媒概論』,國興出版社 (1989).
53. 李秉傑、邱宏明、王弈凱,『非均勻系催化原理與應用』,渤海堂,151 (1993).
54. J. J. Bladon, A. Lamola, F. W. Lytle, W. Sonnenberg, J. N. Robinson, and G. Philipose, “A Palladium Sulfide Catalyst for Electrolytic Plating”, J. Electrochem. Soc., 143, 1206 (1996).
55. T. C. Franklin, “Some Mechanisms of Action of Additives in Electrodeposition Processes”, Surf. Coat. Tech., 30, 415 (1987).
56. G. L. Miessler, and D. A. Tarr, Inorganic Chemistry, p200, Prentice-Hall, New Jersey (1990).
57. A. Haim, “Role of the Bridging Ligand in Inner-Sphere Electron-Transfer Reactions”, Acc. Chem. Res., 8,264 (1975).
58. R. L. Cohen, R. L. Meek, K. W. West, “Sensitization with Palladium-Tin Colloids, I : Role of Rinse and Accelerator Steps”, Plat. Surf. Finish., 63, 52 (1976).
59. 黃怡君,『硫化鈉對直接電鍍速率之促進作用』,國立清華大學碩士論文 (2000).
60. 林水春,『印刷電路板設計與製作』,全華圖書公司 (1993).
61. 江怡穎,『直接電鍍應用於印刷電路板加成法之研究』,國立清華大學碩士論文 (1998).
62. 陳慧璇,『硫-鈀系列直接機構之探究』,國立清華大學碩士論文(1999).
63. D. Weng and U. Landau, “Direct Electroplating on Nonconductors”, J. Electrochem. Soc., 142, 2598 (1995).
64. 賴耿陽,『貴金屬元素化學與應用』,復渶出版社 (1980).
65. 汪成斌,『氧和一氧化氮與分散於氧化鋁上鈀金屬族的作用』,清華大學化學研究所博士論文 (1997).
66. 黃敬佩,『鉑族金屬氧化及脫氧現象之程溫分析研究』,清華大學化學研究所博士論文 (1997).
67. 周其瑋,『利用程溫還原技術探討鈀的化學環境』,清華大學化學研宄所碩士論文 (1998).
68. J. Mizsei, “Structural Transformations of Ultra-Thin Sputtered Pd Activator Layer on Glass and SnO2 Surface”, Thin Solid Films, 391, 209-215 (2001).
69. R. Burch, “Low NOx Options in Catalytic Combustion and Emission Control”, Catalysis Today, 35, 27-36 (1997).
70. J. Chastain ed., “Handbook of X-ray Photoelectron Spectroscopy”, Perkin-Elmer Co., Minnesota (1992).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top