[1] 劉英俊,最新微生物應用工業,中央圖書出版社,1996。
[2] Betina V. Bioactive secondary metabolites of microorganisms. Elsevier Science, Netherlands, 1994.
[3] Brody TM., Larner J and Minneman KP. Human pharmacology, molecular to clinical. Mosby-Year Book, Inc., Missouri, 1998.
[4] Higgens CE and Kastner RE. Streptomyces clavuligerus sp. nov. a β-lactamases antibiotics producer. International Journal of Systematic Bacteriology 1971;21: 326-331.
[5] Buchanan R E and Gibbons N E. Group 25: Streptomycetes and related genera. In Bergey’s Manual of Determinative Bacteriology, eds R. E. Buchanan and N. E. Gibbons, Williams & Wilkins, Baltimore, 1974. p. 667-675..
[6] Hopwood DA. Genetic studies of antibiotics and other secondary metabolites. In Genetics as a Tool in Microbiology (Symposia of the Society for General Microbiology), eds S. W. Glover and D. A. Hopwood, Cambridge University Press, 1981. p. 187-218.
[7] Nagarajan R. β-Lactam antibiotics from Streptomyces. In Cephalosporin and penicillins: Chemistry and biology, ed E. H. Flynn, Academic Press, New York, 1972. p. 636.
[8] Brown AG, Butterworth D, Cole M, Hanscomb G, Hood JD, Reading C and Robinson GN. Naturally occurring β-lactamase inhibitors with antibacterial activity. Journal of Antibiotics 1976;29:668-669.
[9] Reading C and Cole M. Clavulanic acid: a beta-lactamase-inhibiting beta-lactam from Streptomyces clavuligerus. Antimicrobial Agents and Chemotherapy 1977;11:852-857.
[10] Box SJ. Preparation of clavulanic using Streptomyces jumonjinensis. Beecham Group Ltd. US patent 4072569, 1978.
[11] Kitano K. New species Streptomyces katsurahamanus. Takeda Yakuhin Kogyo. JP patent 58081778, 1983.
[12] Okamurak K. Preparation of clavulanic acid. Sanraku Inc. JP patent 55162993, 1980.
[13] Liras P and Rodriguez-Garcia A. Clavulanic acid, a β-lactamase inhibitor: biosynthesis and molecular genetics. Applied Microbiology and Biotechnology 2000;54:467-475.
[14] Hsu LY. Antibacterial activities of amoxicillin alone and in combination with clavulanic acid correlated with β-lactamase production. Chinese Journal of Microbiology Immunology 1991;24:272-280.
[15] Hsueh PR, Chang SC, Chen YC, Hsu LY, Luh KT and Hsieh WC. In vitro antibacterial activities of ticarcillin alone and ticarcillin plus clavulanic acid against β-lactamase producing and non-producing microorganisms. Chinese Journal of Microbiology Immunology 1992;25:149-159.
[16] Butterworth D. Clavulanic acid: properties, biosynthesis, and fermentation. In Biotechnology of Industrial Antibiotics, Ed. E. J. Vandamme, Marcel Dekker, New York, Chap 6, 1984. p. 225-235.
[17] Baggaley KH, Brown AG and Schofield CJ. Chemistry and biosynthesis of clavulanic acid and other clavams. Natural Product Reports 1997;14:309-333.
[18] Hodgson JE, Fosberry AP, Rawlinson NS, Ross HNM, Neal RJ, Arnell JC, Earl AJ and Lawlor EJ. Clavulanic acid biosynthesis in Streptomyces clavuligerus: gene cloning and characterization. Gene 1995;166:49-55.
[19] Thirkettle JE, Baldwin JE, Edwards J, Griffin JP and Schofield CJ. The origin of theβ-lactam carbons of clavulanic acid. Journal of the Chemical Society. Chemical Communications 1997:1025-1026.
[20] Khaleeli N, Li R and Townsend CA. Origin of the β-lactam carbons in clavulanic acid from an unusual thiamine pyrophosphate-mediated reaction. Journal of the American Chemical Society 1999;121:9223-9224.
[21] Jensen SE and Paradkar AS. Biosynthesis and molecular genetics of clavulanic acid. Antonie van Leeuwenhoek 1999;75:122-133.
[22] Paradkar AS, Aidoo KA and Jensen SE. A pathway-specific transcriptional activator regulates late steps of clavulanic acid biosynthesis in Streptomyces clavuligerus. Molecular Microbiology 1998;27:831-843.
[23] Egan LA, Busby RW, Iwata-Reuyl D and Townsend CA. Probable role of clavaminic acid as the terminal intermediate in the common pathway to clavulanic acid and the antipodal clavam metabolites. Journal of the American Chemical Society 1997;119:2348-2355.
[24] Nicholson NH, Baggaley KH, Cassels R, Davison M, Elson SW, Fulston M, Tyler JW and Wononieck SR. Evidence that the intermediate biosynthetic precursor of clavulanic acid is its N-aldehyde analogue. Journal of the Chemical Society. Chemical Communications 1994:1281-1282.
[25] McGowan SJ, Bycroft BW and Salmond GPC. Bacterial production of carbapenems and clavams: evolution of β-lactam antibiotic pathways. Trends in Microbiology 1998;6:203-208.
[26] Calam CT. Starting investigational and production culture, Process Biochemistry 1976;4:7-12.
[27] Buckland BC. The translation of scale in fermentation processes: the impact of computer process control. Bio/Technology 1984;2:875-883.
[28] Freeman A and Aharonowitz Y. Immobilization of microbial cell in crosslinked, prepolymerized, linear polyacrylamide gel: antibiotic production by immobilized Streptomyces clavuligerus cells. Biotechnology and Bioengineering 1981;23:2747-2759.
[29] Warr SRC, Gershater CJL and Box SJ. Seed stage development for improved fermentation performance: increased milbemycin production by Streptomyces hygroscopicus. Journal of Industrial Microbiology 1996;16:295-300.
[30] Kishimoto K and Akiyama SI. Stimulatory effect of ferrous ion on mildiomycin production by Streptoverticillium rimofaciens. Biotechnology Letters 1997;19(7):699-702.
[31] Narang S, Sahai V and Bisaria VS. Optimization of xylanase production by Melanocarpus albomycesg ⅡS68in solid state fermentation using response surface methodology. Journal of Bioscience and Bioengineering 2001;91(4):425-427.
[32] Martinkova L, Machek F, Ujcova E, Kolin F and Zajicek J. Effect of age, amount of inoculum and inoculation medium composition on lactic acid production from glucose by Lactobacillus casei subsp. Rhamnosus. Folia Microbiology 1991;36(3):246-248.
[33] Sunitha K, Kim YO, Lee JK and Oh TK. Statistical optimization of seed and induction conditions to enhance phytase production by recombinant Escherichia coli. Journal of Biochemical Engineering 2000;5:51-56.
[34] Neves AA, Vieira LM and Menezes JC. Effect of preculture variability on clavulanic acid fermentation. Biotechnology and Bioengineering 2001;72(6):628-633.
[35] Court, JR and Pirt SJ. The application of fed-batch culture to the penicillin fermentation. Abstract papers, 5th International Fermentation Symposium, ed. H. Dellweg. Verlag Versuchs, Berlin, 1976.
[36] Lounes A, Lebrihi A, Benslimane C, Lefebvre G and Dermain P. Effect of nitrogen/carbon ratio on the specific production rate of spiramycin by Streptomyces ambofaciens. Process Biochemistry 1996;31(1):13-20.
[37] Suzuki T, Yamane T and Shimizu S. Mass production of thiostrepton by fed-batch culture of Streptomyces laurentii with pH-stat modal feeding of multi-substrate. Applied Microbiology and Biotechnology 1987;25:526-531.
[38] Pual RL and Michael EB. Manipulation of the physiology of clavulanic acid production in Streptomyces clavuligerus. Microbiology 1997;143:3573-3579.
[39] Mayer AF and Deckwer WD. Simultaneous production and decomposition of clavulanic acid during Streptomyces clavuligerus cultivations. Applied Microbiology and Biotechnology 1996;45:41-46.
[40] Suzuki T, Yamane T and Shimizu S. Effect of ammonium feeding on production of thiostrepton by fed-batch culture. Applied Microbiology and Biotechnology 1988;28:188-192.
[41] Jeremy RC and Pirt SJ. Carbon-and nitrogen-limited growth of Penicillium chrysogenum in fed-batch culture: the optimal ammonium ion concentration for penicillin production. Journal of Chemical Technology and Biotechnology 1981;31:235-240.
[42] Trong KV and Gray PP. Influence of ammonium on the biosynthesis of the macrolide antibiotic tylosin. Enzyme and Microbial Technology 1987;9:590-593.
[43] Whitaker A. Fed-batch culture. Process Biochemistry 1980;15:10-18.
[44] 陳國誠,微生物酵素工程學,藝軒圖書出版社,1992。
[45] Yamane T and Shimizu S. Fed-batch techniques in Microbial Processes. Advances in Biochemical Engineering/Biotechnology 1984;30:147-194.
[46] Modak JM, Lim HC and Tayeb YL. General characteristics of optimal feed rate profiles for various fed-batch processes. Biotechnology and Bioengineering 1986;28:1396-1406.
[47] Pirt SJ. Principles of Microbes and Cell Cultivation. Wiley, New York, 1975.
[48] Gray PP and Trong Kvu. Production of the Macrolide Antibiotic Tylosin in Cyclic Fed-batch Culture. Biotechnology and Bioengineering 1987;29:33-40.
[49] Ates S, Elibol M and Mavituna F. Production of actinorhodin by Streptomyces coelicolor in batch and fed-batch cultures. Process Biochemistry 1997;32:273-278.
[50] Traugott CS, Fiedler HP, Zahner H. Optimized nikkomycin production by fed-batch and continuous fermentation. Applied Microbiology and Biotechnology 1993;39:433-437.
[51] Kempf M, Theobald U and Fiedler HP. Correlation between the consumption of amino acid and the production of the antibiotic gallidermin by Staphylococcus gallinarum. Biotechnology Letters 1999;21:959-963.
[52] Chen KC, Lin YH, Tsai CM, Hsieh CH, Houng JY. Optimization of glycerol feeding for clavulanic acid production by Streptomyces clavuligerus with glycerol feeding. Biotechnology Letters 2002;24:455-458.
[53] Foulstone M and Reading C. Assay of amoxicillin and clavulanic acid, the components of Augmentin, in biological fluids with HPLC. Antimicrobial Agents and Chemotherapy 1982;22:753-762.
[54] Mccullough H. The determination of ammonia in whole blood by a direct colorimetric method. Clinica Chimica Acta 1967;17:297-304.
[55] Sebastine IM, Stocks SM, Cox PW, and Thomas CR. Characterisation of percentage viability of Streptomyces clavuligerus using image analysis. Biotechnology Techniques 1999;13:419-423.
[56] Gouveia ER, Baptista-Neto A, Azevedo AG, Badino-Jr AC, Hokka CO. Improvement of clavulanic acid production by Streptomyces clavuligerus in medium containing soybean derivatives. World Journal of Microbiology and Biotechnology 1999;15:623-627.
[57] Romero J, Liras P, Martin JF. Dissociation of cephamycin and clavulanic acid biosynthesis in Streptomyces clavuligerus. Applied Microbiology and Biotechnology 1984;20:318-325.
[58] Lee MS, Lim JS, Oh KK, Yang DR, and Kim SW. Enhancement of cephalosporin C production by cultivation of Cephalosporium acremonium M25 using a mixture of inocula. Letters in Applied Microbiology 2001;32:402-406.
[59] Ellis H, Hundt HKL, Swart KJ, Hundt AF, Joubert AL, Essen GH and Plessis JB. A fast and simple method for the determination of clavulanic acid in human plasma using derivatisation reaction kinetics. Journal of Pharmaceutical and Biomedical Analysis 2000;22:933-937.
[60] Park SY, Momose I, Tsunoda K and Okabe M. Enhancement of cephamycin C using soybean oil as the sole carbon source. Applied Microbiology and Biotechnology 1994;40:773-779.
[61] Sarkar S, Sreekanth B, Kant S, Banerjee R, Bhattacharyya BC. Production and optimization of microbial lipase. Bioprocess Engineering 1998;19:29-32.
[62] 謝禎皓,利用Streptomyces clavuligerus生產clavulanic acid之研究,國立清華大學化學工程系碩士論文,2000。[63] 蔡政閔,利用進料批次操作以Streptomyces clavuligerus生產clavulanic acid之研究,國立清華大學化學工程系碩士論文,2001。[64] Prave P, Faust U, Sittig W, Sukatsch DA. Fundamentals of Biotechnology. Weinheim; Deefield Beach, FL: VCH, 1987:68-104.
[65] Suzuki T, Yamane T, Shimizu S. Kinetics and effect of nitrogen source feeding on production of poly-β-hydroxybutyric acid by fed-batch culture. Applied Microbiology and Biotechnology 1986;24:366-369.
[66] Lee SD, Park SW, Oh KK, Hong SI, Kim SW. Improvement for the production of clavulanic acid by mutant Streptomyces clavuligerus. Letters in Applied Microbiology 2002;34:370-375.
[67] Romero J, Liras P, Martin JF. Utilization of ornithine and arginine as specific precursors of clavulanic acid. Applied and Environmental Microbiology 1986;52:892-897.
[68] Mendz GL, Hazell SL. The urea cycle of Helicobacter pylori. Microbiology 1996;142:2959-2967.
[69] Ives PR, Bushell ME. Manipulation of the physiology of clavulanic acid production in Streptomyces clavuligerus. Microbiology 1997;143:3573-3579.
[70] Romero J, Liras P, Martin JF. Dissociation of cephamycin and clavulanic acid biosynthesis in Streptomyces clavuligerus. Applied Microbiology and Biotechnology 1984;20:318-325.
[71] Lebrihi A, Lamsaif D, Lefebvre G, Germain P. Effect of ammonium ions on spiramycin biosynthesis in Streptomyces ambofaciens. Applied Microbiology and Biotechnology 1992;37:382-387.
[72] Romero J, Liras P, Martin JF. Utilization of ornithine and arginine as specific precursors of clavulanic acid. Applied and Environmental Microbiology 1986;52: 892-897.