跳到主要內容

臺灣博碩士論文加值系統

(44.210.132.31) 您好!臺灣時間:2022/08/19 19:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李秀君
研究生(外文):Hsiu-Chun Li
論文名稱:團聯式共聚合物球體結構之
論文名稱(外文):Crystallization-Induced Perturbation of Microdomain Morphology in Sphere-Forming Block Copolymer
指導教授:陳信龍陳信龍引用關係
指導教授(外文):Hsin-Lung Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:75
中文關鍵詞:團聯式共聚合物微相分離
外文關鍵詞:block copolymermicrodomain morphology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討結晶性-無定形團聯式共聚合物(crystalline- amorphous block copolymer , C-b-A)與A均聚物形成摻合體之結晶誘導形態轉化。主要利用小角度X-ray散射儀(SAXS)及穿透式電子顯微鏡(TEM)來觀察結晶前後微相結構的變化,瞭解組成、結晶條件及退火效應對結晶形態轉化之影響。
團聯式共聚合物會因為自我聚集的行為而形成微相分離 (microphase separation),且隨著兩段鏈長比例的不同,而產生不同的微相結構。對於熔融形態的轉化亦可藉由摻入均聚物,改變系統組成的比例而達成。本研究第一個主題將利用C-b-A/A摻合的方式,使結晶鏈段(C)在熔融態下形成圓球microdomain(MD)之後再引發C 段結晶,以探討結晶對圓球MD幾何形狀之影響。在另一個研究主題上,同樣利用摻合的方式在C-b-A共聚合物中同時摻入A、C均聚物,形成三成份混摻(ternary blends),其目的是將C均聚物藉由乳化作用被侷限於奈米尺寸圓球的MD中,探討C均聚物在奈米空間下的結晶行為。
第一個主題的摻合系統為Ploy(ethylene oxide-b-butadiene) (PEO-b-PB)/PB。分析摻合體在PB之總體積分率(fPB)為0.83及0.87熔融態下的SAXS圖譜發現實驗之form factor scattering可以與理論之圓球form factor scattering 來擬合,配合TEM由真實空間下觀察,確定在熔融態下的形態為PEO圓球之MD。而摻合體在結晶後的form factor scattering圖譜,皆可利用圓球與橢球form factor scattering來擬合,然而橢球擬合結果所計算的MD密度才有合理性。再加上TEM直接觀察結晶MD之結果,可確定PEO MD在結晶後由原本的圓球MD 變形為橢球的MD,其aspect ratio約為1.3。將此結晶摻合體繼續利用高溫(38℃)退火,發現退火破壞原本之橢球幾何尺寸,利用橢球form factor 擬合的結果發現,經由退火後的MD體積,為熔融態平均單一圓球MD的2∼3倍。以TEM觀察發現,退火可促使結晶MD產生連結(coalescence),而形成其aspect ratio約為2.3之桿狀MD,此一結果與SAXS圖譜擬合的結果相近,故確定在經由退火的結晶MD,可由2∼4個橢球連結成類似桿狀的MD形態。
在另一研究主題中, PEO-b-PB同時摻入PB及PEO的均聚物產生三成份混摻,PEO-b-PB/PB/PEO摻合體,此時fPB維持在0.87,故PEO成份在熔融態下形成圓球MD。而PEO均聚物與PEO共聚合物鏈段重量比例(Wh,PEO/Wb,PEO)為0.74∼3.0。首先經由DSC冷卻掃瞄,可發現約在-20∼-40℃之間出現兩個結晶放熱峰,升溫圖譜也可發現兩個融化吸熱峰。因在常溫下沒PEO均聚物的結晶放熱峰,故推斷沒有造成巨觀相分離,即PEO均聚物可順利地摻入圓球MD 之中。比較兩成份摻合與三成份摻合的SAXS圖譜,發現三成份摻合體的form factor散射峰位於較low q,代表三成份PEO的圓球MD大於兩成份PEO的球體MD,即意謂PEO均聚物入PEO block所形成的MD之中。於三成份摻合體中,可利用不同的結晶條件,使PEO均聚物與PEO block 依序結晶,此顯示結晶後的MD為一結晶-結晶殼層結構(crystal-crystal core-shell structure),於核心層為PEO均聚物結晶層,於殼層為PEO block結晶層。然而在PEO分子量為1000與6000的均聚物摻合體中,發現兩均聚物在彼此不受拘限的環境下會形成共結晶,然而在奈米空間下的PEO均聚物與PEO block,卻因PEO block鏈段與另一端PB鏈段的鍵結,而無法共結晶,然而形成結晶-結晶殼層結構。

This thesis consists of two parts. The first part centers on the studies of the crystalline microdomain (MD) structure in a sphere-forming ploy(ethylene oxide)-block-polybutadiene (PEO—b-PB)/PB blends; the effects of crystallization condition and post-annealing below the melting point have been explored. The second part investigates the crystallization behavior of PEO homopolymer confined within the nanoscaled spherical MDs; such a homopolymer confinement was achieved through a ternary blending of PEO-b-PB with both PEO and PB homopolymers.
A cylinder-forming PEO-b-PB was blended with a low molecular weight PB homopolymer to yield the wet-brush type of blends containing PEO spherical MDs in the melt. Crystallizations of PEO blocks within the spherical MDs were induced at the temperatures above the Tg of PB such that the domains were dispersed in a soft matrix during crystallization. The MD structures were then probed by small angle X-ray scattering (SAXS) from which the perturbation in domain structure was resolved through the analysis of the form factor scattering. It was found that the spherical MDs slightly deformed into ellipsoid-like objects with the average aspect ratio of ca. 1.3 upon crystallization. The crystallization-induced MD deformation was further verified through the real-space morphology observed by TEM. The effect of post-annealing on the structure of the ellipsoidal crystalline MDs was also investigated. In this case, the samples having been crystallized at a given temperature was annealed at temperatures below the melting point of PEO. The SAXS profiles and TEM micrographs of the annealed samples showed that the ellipsoidal crystalline MDs transformed into rod-like objects with the average aspect ratio of ca. 2.5 upon annealing. The dimensions of the individual rods exceeded that of the crystalline MDs, suggesting that these crystalline rods were formed through coalescence of 2 ~ 3 crystalline MDs during the annealing process. The MD coalescence, which occurred below the melting point of PEO, may be termed as “sold-solid coalescence”, and its detailed mechanism would deserve further studies.
In the ternary PEO-b-PB/PEO/PB blends, the PEO homopolymer has been successfully incorporated into the MDs established by the microphase separation between PEO and PB blocks. This system thus offered an interesting model for investigating the crystallization behavior of homopolymer chains under nanoscaled spatial confinement. In the MDs, the PEO hompolymer did not co-crystallize with the PEO blocks, thereby generating a crystalline-crystalline core-shell structure where the PEO hompolymer crystal formed the core and the shell was constituted by the crystalline PEO blocks. The PEO homopolymer was capable of co-crystallizing with the PEO homopolymer having the same molecular weight as the PEO blocks. Consequently, the “segregated crystallization” in the nanoscaled MDs was interpreted on the basis of the ²connectvity effect” imposed on the PEO blocks by the corona PB blocks, where the tendency of the PB blocks to resist its conformational perturbation introduced by PEO crystallization has effectively prevented the PEO blocks from cocrystallizing with the PEO homopolymer within the MDs.

目錄
摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 X
一、前言 1
二、文獻回顧 3
2-1 A─A團聯式共聚合物形態變化之相關理論 3
2-2 C─A團聯式共聚合物結晶行為對形態的影響 11
2-3團聯式共聚合物形態變化之控制方法 15
2-4團聯式共聚合物摻合體之形態 18
三、實驗部分 24
3-1研究目的與動機 24
3-2藥品及儀器設備原理 25
3-2-1藥品 25
3-2-2儀器設備及原理 27
3-3實驗方法 30
3-3-1摻合體(PEO-b-PB/PB、PEO-b-PB/PEO/PB)之製備 30
3-3-2 SAXS實驗 30
3-3-3 DSC實驗 31
3-3-4 TEM實驗 31
四、結果與討論 32
4-1PEO-b-PB/PB摻合體熔融態的微相分離形態 32
4-2 PEO-b-PB/PB摻合體結晶誘導形態的轉化 39
4-3 Post-annealing 效應對於PEO-b-PB/PB結晶摻合體形態的影響51
4-4 PEO-b-PB/PB/PEO三成份摻合體之結晶行為 61
五、結論 68
六、參考文獻 69
1Inoue, T.; Soen, T.; Hashimoto, T.; Kawai, H. Macromolecules 1970, 3, 87.
2Cohen, R. E.; Ramos, A. R. Macromolecules 1979, 12, 131.
3Cohen, R. E.; Torradas, J. M. Macromolecules 1984, 17, 1101.
4Leibler, L.; Pincus, A. Macromolecules 1984, 17, 2922.
5Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1991, 24, 6182.
6Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 422.
7Hashimoto, T.; Koizumi, S.; Hasegawa, H.; Izumitani, T.; Hyde, S. T. Macromolecules 1992, 25, 1433.
8Han, C. D.; Baek, D. M.; Kim, J.; Kimishima, K.; Hashimoto, T. Macromolecules 1992, 25, 3052.
9Helfand, E.; Wasserman, Z. R. Macromolecules 1978, 11, 960.
10Helfand, E.; Wasserman, Z. R. Macromolecules 1980, 13, 994.
11Alward, D. B.; Kinning, D. J.; Thomas, E. L.; Fetters, L. J. Macromolecules 1986, 19, 215.
12Thomas, D. K.; Alward, D. B.; Kinning, D. J.; Handlin, D. L.; Jr.; Fetters, L. J. Macromolecules 1986, 19, 2197.
13Helfand, E.; Wasserman, Z. R. Macromolecules 1976, 9, 879.
14Sakurai, S.; Kawada, H.; Hashimoto, T. Fetters, L. J. Macromolecules 1993, 26, 5796.
15Meier, D. J. J. Polym. Sci. ,Part C 1969, 26, 81.
16Helfand, E. Macromolecules 1975, 8, 552.
17Leibler, L. Macromolecules 1980, 13, 1602.
18Ceresa, R.J.; Grace, W.R. Block and Graft Copolymers. In Encyclopedia of polymer science and technology ,Vol.2,Interscience Publishers,New York,1985.
19Ohta, T.; Kawasaki, K. Macromolecules 1986, 19, 2621.
20Mani, S.; Weiss, R. A.; Hahn, S. F.; Williams, C. E.; Cantino, M. E.; Khairallah, L. H. Polymer 1998, 39, 2023.
21Velankar S.; Cooper. S. L. Macromolecules 1998, 31, 9181.
22Mai, S. M.; Fairclough, J. P. A.; Terrill, N. J.; Turner, S. C.; Hamley, I. W.; Matsen, M. W.; Ryan, A. J.; Booth, C. Macromolecules 1998, 31, 8810.
23Elbs, H.; Fukunaga, K.; Stadler, R.; Sauer, G.; Magerle, R.; Krausch, G. Macromolecules 1999, 32, 1204.
24Micha, M. A.; Burger, C.; Antonietti, M. Macromolecules 1998, 31, 5930.
25Yu, H.; Wang, J.; Natansohn, A.; Singh, M. A. Macromolecules 1999, 32, 4365.
26Kane, L.; Satkowski, M. M.; Smith, S. D.; Spontak, R. J. Macromolecules 1996, 29, 8862.
27Cohen, R. E.; Cheng, P. L.; Douzinas, K.; Kofinas, P.; Berney, C. V. Macromolecules 1990, 23, 324.
28Kimishima, K.; Jinnai, H.; Hashimoto, T. Macromolecules 1999, 32, 2585.
29Matsushita, Y.; Mori, K.; Saguchi, R.; Nakao, Y.; Noda, I.; Nagasawa, M. Macromolecules 1990, 23, 4313.
30Hashimoto, T.; Kowsaka, K.; Shibayama, M.; Suehiro. S. Macromolecules 1986, 19, 750.
31Vavasour, J. D.; Whitmore, M. D. Macromolecules 1992, 25, 5477.
32Matsen, M.W.; Schick, M. Physical Review Letters 1994, 72, 2660
33Matsen, M.W.; Bates, F.S. Macromolecules 1996, 29, 1091.
34Matsen, M.W.; Bates, F.S. Macromolecules 1996, 29, 7641.
35Hajduk, D.A.; Harper, P.E.;Gruner, S.M.; Haneker, C.C.; Kim, G.;Thomas, E.L.; Fetters, L.J. Macromolecules 1994, 27, 4063.
36Hajduk, D. A.; Takenouchi, H.; Hillmyer, M. A.; Bates, F. S. Macromolecules 1997, 30, 3788.
37Matsen, M.W.; Bates, F.S. Journal of Polymer Science B: Polymer Physics 1997, 35, 945.
38Ryan, A. J.; Hamley, I. W.; Bras, W.; Bates, F. S. Macromolecules 1995, 28, 3860.
39Shultz, J. M. J. Polym. Sci., Polym. Phys. Ed. 1976, 14, 2291.
40Jloudas, G.; Tsitsilianis, C. Macromolecules 1997, 30, 4381.
41Hamley, I. W.; Fairclough, J. P. A.; Bates, F. S.; Ryan, A. J. Polymer 1998, 39, 1429.
42Rangarajan, P.; Register, R.A.; Adamson, D.H.; Fetters, L.J.; Bras, W.; Naylor, S.; Ryan, A.J. Macromolecules 1995, 28, 1422.
43Unger, R.; Beyer, D.; and Donth, E. Polymer, 1991, 32, 3305.
44Zhang, G. Y.; Luo, X. L.; Li, C. F.; Ma, D. Z. J. Polym. Sci., Polym. Phys. Ed. 1999, 37, 575.
45Quirel, D. J.; Register, R. A.; Marchand, G. R. Macromolecules 1997, 30, 4551.
46Quirel, D. J.; Register, R. A.; Marchand, G. R.; Ryan, A. J. Macromolecules 1997, 30, 8338.
47Rangarajan, P.; Register, R. A.; Fetters, L. J.; Bras, W.; Naylor, S.; Ryan, A. J. Macromolecules 1995, 28, 4932.
48Rangarajan, P.; Register, R. A.; Fetters, L. J. Macromolecules 1993, 26, 4640.
49Nojima, S.; Nkano, H.; Takahashi, Y.; Ashida. T. Polymer 1994, 35, 3479.
50Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992, 25, 2237.
51Nojima, S.; Nkano, H.; Takahashi, Y.; Ashida. T. Polymer Journal 1995,27,673.
52Nojima, S.; Nakano, H.; Ashida; T. Polymer 1993, 34, 4168.
53Nojima, S.; Hashizume, K.; Rohadi, A.; Sasaki, S. Polymer 1997, 38, 2711.
54Nojima, S.; Kikuchi, N.; Rohadi, A.; Tanimoto, S.; Sasaki, S. Macromolecules 1999, 32, 3727.
55Nojima, S.; Tanaka, H.; Roohadi, A.; Sasaki, S. Polymer 1998, 39, 1727.
56Liu, L.; Jiang, B.; Zhou, E. Polymer 1996, 37, 3937.
57Loo, Y. L.; Register, R. A.; Ryan, A. J. Macromolecules 2002,35, 2365.
58Xu, J. T.; Turner, S. C.; Fairclough, J. P. A.; Mai, S. M.; ; Ryan, A. J. Macromolecules 2002,35, 3614.
59Sakurai, S. TRIP 1995, 3, 90.
60Khandpur, A.K.; Forster, S.; Bates, F.S.; Hamley, I.W.; Ryan, A.J.; Bras, W.; Almdal, K.; Mortensen, K. Macromolecules 1995, 28, 8796.
61Pollard M, Russell T.P, Ruzette A.V, Mayes A.M, Gallot Y. Macromolecules1998, 31, 6493.
62Sakurai, S.; Momii, T,; Taie, K.; Shibayama, M.; Nomura, S.; Hashimoto, T. Macromolecules 1993, 26, 485.
63Funaki, Y.; Kumano, K.; Nakao, T.; Jinnai, H.; Yoshida, H.; Kimishima, K.; Tsutsumi, K.; Hirokawa, Y.; Hashimoto, T. Polymer 1999, 40, 7174.
64Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 2645.
65Meftahi, M. V. de; Frechet, J. M. J. Polymer 1988, 29, 477.
66Adedeji, A.; Jamieson, A. M.; Hudson, S. D. Polymer 1995, 36, 2753.
67Girard-Reydet, E.; Sautereau, H.; Pascault, J. Polymer 1999, 40, 1677.
68Laurer, J. H.; Ashraf, A.; Smith, S. D.; Samseth, J.; Spontak, R. J. Supramolecular Science 1997, 4, 121.
69Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4378.
70Tanaka, H.; Hasegawa, H.; Hashimoto. T. Macromolecules 1991, 24, 240.
71Prahsarn, C.; Jamieson, A. M. Polymer 1997, 38, 1273.
72Winey, K.I.; Thomas, E.L.; Fetters, L.J. J Chem Phys 1991, 95, 9367.
73Sakurai, S.; Irie, H.; Umeda, H.; Nomura, S.; Lee, H.H.; Kim, J.K. Macromolecules 1998, 31, 336.
74Morrison, F.A.; Winter, H.H. Macromolecules 1989, 22, 3533.
75Morrison,F.A.;Winter,H.H.;Gronski, W.; Barnes, J.D. Macromole-c ules 1990, 23, 4200.
76Anastaiadis, S.H.; Russell, T.P.; Satija, S.K.; Majkrzak, C.F. J Chem Phys 1990,92,5677.
77Amundson, K.; Helfand, E.; Davis, D.D.; Quan, X.; Patel, S.; Smith, S.D. Macromolecules 1991, 24, 6546.
78Amundson, K.; Helfand, E.; Davis, D.D.; Quan, X.; Smith, S.D. Macromolecules 1993, 26, 2698.
79Amundson, K.; Helfand, E.; Davis, D.D.; Quan, X.; Hudson, S.D.; Smith, S.D. Macromolecules 1994,27,6559.
80Park,C.; Simmons, S.; Fetters, L.J.; Hsiao, B.; Yeh, F,; Thomas, E.L. Polymer 2000, 41, 2971.
81Hashimoto, T.; Mitsumura, N.; Yamaguchi, D.; Takenaka, M.; Morita, H.; Kawakatsu, T.; Doi, M. Polymer 2001, 42, 8477.
82Mayes, A. M.; Russell, T. P.; Satija, S. K.; Majkrzak, C. F. Macromolecules 1992, 25, 6523.
83Koizumi, S.; Hasegawa, H.; Hashimoto, T. Macromolecules 1994, 27, 7893.
84Lee, H. K.; Kang, C. K.; Zin, W. C. Polymer 1997, 38, 1595.
85Sakurai, K.; MacKight, W. J.; Lohse, D. J.; Schulz, D. N.; Sissano, J. A.; Lin, J-S.; Agamalyan, M. Polymer 1996, 37, 4443.
86Koizumi, S.; Hasegawa, H.; Hashimoto, T. Macromolecules 1994, 27, 6532.
87Matsen, M. W. Macromolecules 1995, 28, 5765.
88Kinning, D. J.; Thomas, E. L.; Fetters, L. J. Macromolecules 1991, 24, 3893.
89Hashimoto, T.; Kimishima, K.; Hasegawa, H. Macromolecules 1991, 24, 5704.
90Nojima, S.; Roe, R. J.; Rigby, D.; Han, C. C. Macromolecules 1990, 23, 4305.
91Orso, K. A.; Green, P. F. Macromolecules 1999, 32, 1087.
92Comprehensive polymer science. Suppl. 2, p.497 ed. S. L. Aggarwal and S. Russo
93Hamley, I. W. The Physics of Block Copolymers (Oxford Univ. Press, New York, 1998), Chip. 6.
94Brown, H. R. Macromolecules 1989, 22, 2859.
95Creton, C.; Kramer, E. J.; Hui, C. Y.; Brown, H. R. Macromolecules 1992, 25, 3075.
96Washiyama, J.; Creton, C.; Kramer, E. J. Macromolecules 1992, 25, 4751.
97Willett, J. L.; Wool, R. P. Macromolecules 1993, 26, 5336.
98Washiyama, J.; Creton, C.; Kramer,E.J. Macromolecules 1993, 26, 6011.
99Hashimoto, H.; Fujimura, M.; Hashimoto, T.; Kawai, H. Macrom -olecules 1981, 14, 844.
100Jeon, H.S.; Lee, J.H.; Balsara, N.P. Macromolecules 997, 30, 973.
101Wang, Z.G.; Safran, S.A. J.Phys .(France) 1990,51,185.
102Chen, H. L.; Hsiao, S. C.;Lin, T. L.;Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671.
103Roe, R.J. Methods of X-Ray and Neutron Scattering in Polymer Science ; Oxford University Press: New York, 2000; Chapter 5.
104Hashimoto, T.; Fujimura, M.; Kawai, H. Macromolecules 1980, 13, 1660.
105Chen, H. L.; Wu, J. C.; Lin, T. L.; Lin, J. S. Macromolecules2001, 34, 6936.
106Feigin, L.A.; Svergun, D.I. Structure Analysis by Small-Angle X-Ray and Neutron Scattering ; Plenum Press: New York, 1987; Chapter 3.
107Polymer Handbook, 3rd ed.; Brandrup, J., Immergut, E. H., Eds,; Wiley: New York, 1989.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top