跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.251) 您好!臺灣時間:2022/08/11 21:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭龍恩
論文名稱:以Ni-Cr/YDC觸媒行甲烷與二氧化碳重組反應之研究
論文名稱(外文):Methane reforming reaction with Carbon Dioxide over Ni-Cr/YDC Catalyst
指導教授:黃大仁黃大仁引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:71
中文關鍵詞:二氧化碳重組反應
外文關鍵詞:NiCrYDCCO2 reforming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用具有氧空洞的導氧離子材料,氧化釔添加氧化鈰(Y10DC)當載體,以含浸法擔載活性金屬鎳及助觸媒金屬鉻製成雙金屬觸媒,進行甲烷與二氧化碳重組生成合成氣反應(CO2 reforming),並利用TPR、NDIR等來觀察觸媒表面的一些性質。
TPR結果發現,隨著鉻的添加將增加鎳與氧之間的鍵結力,使得氧化鎳需在更高溫才能還原,且添加過多的鉻也會覆蓋到表面的氧空洞。活性測試的結果發現,具有氧空洞的YDC擔體,因為表面氧空洞可以提供二氧化碳的分解,所以在H2/CO方面比一般傳統擔體如α-氧化鋁還佳(越趨近於1 );且甲烷易以CHx形式存在於氧化鋁的活性位上,不易與氧發生反應,因而造成其較易失活。在不同載體擔載Ni-Cr/YDC雙金屬觸媒中發現,鉻應為物理性助觸媒,並不會增加CH4或CO2;故觸媒會因鉻添加使得鎳活性金屬更為分散,進而提高了觸媒的初始活性。唯不同之處在於,觸媒的載體具高表面積時,會因鉻的添加進而增加其抗積碳能力;低表面積時,反而會增加減少觸媒的抗積碳能力。此說明屬結構敏感性的CO2 reforming觸媒反應,活性金屬的分散度將會對觸媒的抗積碳能力造成影響。
另外,在本實驗中證實積碳確實是觸媒衰退的主要因素,但燒結也是造成失活的因素之一。而由TPO及TEM的結果可發現,觸媒表面的碳物種,主要為活性金屬鎳上甲烷中間物種(CHx),逐漸分解最後會變成石墨狀的碳(絲狀碳)所得,非CO歧化反應所生成;而且鉻的添加並不會使得觸媒表面上的CO發生岐化反應而生成膠狀碳。

目 錄
第一章.緒論 1
第二章.理論與文獻回顧 3
2-1.反應相關的化學反應方程式 3
2-2.甲烷在觸媒表面吸附的活化過程 4
2-3.二氧化碳在觸媒表面的活化過程 5
2-4.積碳的來源 6
2-5.積碳去除的方法及其相關研究 7
2-6.金屬與擔體作用力與氧空洞催化效應 9
2-7.導氧離子氧化物與氧空洞 10
2-7-1.導氧離子氧化物 10
2-7-2.氧空洞擔體 10
2-8.甲烷與二氧化碳重組反應的吸附模式 13
2-9.氧化鈰 14
2-10. 物理組織助觸煤與化學結構助觸煤 14
2-11.程溫還原 17
2-12.觸媒的選擇 18
第三章.實驗方法與步驟 20
3-1藥品 20
3-2.觸媒種類及製備 20
3-2-1.觸媒種類 20
3-2-2.觸媒製備 21
3-3.實驗裝置與實驗方法 24
3-3-1.二氧化碳-甲烷重組反應系統 24
3-3-2. BET表面積 28
3-3-3.程溫還原 (Temperature-programmed reduction) 28
3-3-4.程溫反應(Temperature-programmed reaction) ------------29
第四章.結果與討論 32
4-1.程溫還原圖譜分析(TPR)---------------------------------------32
4-1-1.以氧化釔添加氧化鈰(YDC)為載體-------------------------32
4-1-2.以α-Al2O3為載體----------------------------------------------40
4-1-3. Pt-Cr雙金屬觸媒----------------------------------------------43
4-2.甲烷-二氧化碳重組反應活性測試 -45
4-2-1.以氧化釔添加氧化鈰(YDC)為載體-------------------------45
4-2-2.以Al2O3為載體-------------------------------------------------50
4-3. 觸媒活性衰退原因-------------------------------------------------54
4-4. 不同載體之鉻鎳雙金屬觸媒H2/CO的探討------------------58
4-5. 鉻-鎳/YDC雙金屬觸媒積碳來源的探討----------------------60
第五章.結論 65
第六章.未來研究方向
參考文獻 67
圖 目 錄
圖2-1.螢石型氧化物之結構 11
圖3-1.觸媒鍛燒系統裝置圖 23
圖3-2a.反應管 25
圖3-2b.甲烷-二氧化碳重組反應裝置圖 26
圖3-3.BET表面積系統裝置圖 30
圖3-4.程溫還原系統裝置圖 31
圖4-1. 固定鎳含量改變鉻含量擔載在YDC(鍛燒700℃)上之
TPR 圖譜-------------------------------------------------------------- 33
圖4-2. 固定鎳含量改變鉻含量擔載在YDC(鍛燒1000℃)上之
TPR 圖譜---------------------------------------------------------------34
圖4-3. 固定鉻含量改變鎳含量擔載在YDC(鍛燒700℃)上之
TPR 圖譜---------------------------------------------------------------36
圖4-4. 固定鎳含量改變鉻含量擔載在α-Al2O3擔體上之TPR
圖譜 41
圖4-5. 固定鉑含量改變鉻含量擔載在YDC(鍛燒700℃)上之
TPR 圖譜---------------------------------------------------------------44
圖4-6. 固定鎳含量改變鉻含量擔載在YDC(鍛燒700℃)上
一氧化碳生成速率與時間的關係圖-------------------------------46
圖4-7. 固定鎳含量改變鉻含量擔載在YDC(鍛燒1000℃)上
一氧化碳生成速率與時間的關係圖-------------------------------47
圖4-8. 固定鎳含量改變鉻含量擔載在α-Al2O3擔體上一氧化碳
生成速率與時間的關係圖-------------------------------------------51
圖4-9. 固定鎳含量改變鉻含量擔載在γ-Al2O3擔體上一氧化碳
生成速率與時間的關係圖-------------------------------------------52
圖4-10. 固定鎳含量改變鉻含量(YDC)之鉻添加量與失活速率、 觸媒積碳量之關係圖----------------------------------------------55
圖4-11. 固定鎳含量改變鉻含量(Al2O3)之鉻添加量與失活速率、 觸媒積碳量之關係圖----------------------------------------------56
圖4-12. 不同載體之鉻鎳雙金屬觸媒甲烷重組反應之H2/CO 圖譜-------------------------------------------------------------------59
圖 4-13. YDC(鍛燒700℃)及α-Al2O3載體擔載鉻鎳雙金屬觸媒
之反應溫度圖-------------------------------------------------------61
圖 4-14. 鉻-鎳/YDC雙金屬觸媒(載體溫度700℃),在不同鉻添加量下的TPO圖譜------------------------------------------------------62
圖 4-15. 2Ni-0.3Cr/YDC經甲烷與二氧化碳重組反應30小時後之TEM圖譜------------------------------------------------------------64
表 目 錄
表4-1. 固定鎳含量(wt%)改變鉻含量(wt%)擔載在YDC上之TPR數據(A)載體鍛燒700℃ (B)載體鍛燒1000℃ -35
表4-2. 固定鉻含量(wt%)改變鎳含量(wt%)擔載在YDC(載體鍛燒700℃)上之TPR數據-------------------------------------------------37
表4-3. 固定鎳含量(wt%)改變鉻含量(wt%)擔載在α-Al2O3擔體上之TPR數據----------------------------------------------------------------42
表4-4. 固定鎳含量(wt%)改變鉻含量(wt%)擔載在YDC(700℃)上之活性數據(A)載體鍛燒700℃ (B)載體鍛燒1000℃---------------------48
表4-4. 固定鎳含量(wt%)改變鉻含量(wt%)擔載在Al2O3上之活性數據(A) α- Al2O3 (B) γ- Al2O3 ------------------------------------53

1. G. Ertl, H. Knozinger, J. Weitkamp “3.6 Carbon Monoxide and Carbon Dioxide Hydrogenation, ” Handbook of Heterogeneous Catalysis Vol.4, 1876-1894
2. Shenglin Liu, G. X. Xiong, W. S. Yang, L. Y. Xu, G. Xiong,C. Li, “Partial oxidation of enthane to syngas over nickel-based catalysts modified by alkali metal oxide and earth metal oxide, ” Catal Lett., 63, 167, (1999).
3. M. C. J. Bradford and M. A. Vannice “CO2 reforming of CH4, ”Catal. Rev.-Sci. Eng., 41(1), 1-42, (1999).
4. W. M. H. Sachtler D. F. Shriver W. B. Hollenberg A. F. Lang, “Promoter Action in Fischer-Tropsch Catalyst, ”J. Catal., 92, 429, (1985).
5. H. Cordatos, T. Bunluesin, J. Stubenrauch, J. M. Vohs, R. J. Gorte, “Effect of Ceria Structure on Oxygen Migration for Rh/Ceria Catalysts, ”J. Phys. Chem., 100, 785, (1996).
6. Michael C. J. Bradford, M. A. Vannice, “CO2 Reforming of CH4 over Supported Pt Catalysts, ”J. Catal., 173, 157, (1998).
7. J-H. Kim, D. J. Suh, T-J. Park, K-L. Kim “Effect of metal partical size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts, ”Appl. Catal. A 197,191, (2000).
8. T. Horiuchi, K. Sakuma, T. Fakui, Y. Kubo, T. Osaki, T. Mori “Suppressin of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst, ”Appl. Catal. A, 144, 111, (1996).
9. T. Horiuchi, K. Sakuma, T. Fukui, Y. Kubo, T. Osaki, T. Mori, “Suppression of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst, ”Appl. Catal. A: General, 144, 111, (1996).
10. G. Xu, K. Shi, Y. Gao, H. Xu, and Y. Wei “Studies of reforming natural gas with carbon dioxide to produce synthesis gas: X. The role of CeO2 and MgO promoters, ”J. Mole. Catal., 147, 47, (1999).
11. Y. Schuurman, C. Mirodatos, P. Ferreira-Aparicio, I. Rodriguez-Ramos, and A. Guerrero-Ruiz “Bifunctional pathways in the carbon dioxide reforming of methane over MgO-promoted Ru/C catalysts, ” Catal. Lett.,66, 33, (2000).
12. S. Wang, and G. Q. (Max) Lu “Effects of promoters on catalytic activity and carbon deposition of Ni / r-Al2O3 catalysts in CO2 reforming of CH4, ”J. Chem. Technol. Biotechnol., 75, 589, (2000).
13. K. Tomishige, O. Yamazaki, Y. Chen, K. Yokoyama, X. Li, K. Fujimoto, “Development of ultra-stable Ni catalyst for CO2 reforming of methane, ”Catal. Today, 45, 35, (1998).
14. S. Sharma, S Hilaire, J. M. Vohs, R. J. Gorte, and H. -W. Jen, “Evidence for Oxidation of Ceria by CO2, ”J. Catal., 190, 199, (2000).
15. Jun-Mei Wei, B.-Q. Xu, J.-L. Li, Z.-X. Cheng, Q.-M. Zhu, “Highly active and stable Ni/ZrO2 catalyst for syngas production by reforming of methane, ”Appl. Catal. A: General, 196, L167, (2000).
16. A. Slagtern, Y. Schuurman, C. Leclercq, X. Verykios, C. Mirodatos, “Specific Features Concerning the Mechanism of Methane Reforming by Carbon Dioxide over Ni/La2O3 Catalyst, ”J. Catal., 172, 118, (1997).
17. D. C. Seet, M. C. Wheeler, and C. B. Mullins, “Mechanism of the Dissociative Chemisorption of Methane over Ir(110) — Trapping -Mediated or Direct, ”Chem. Phys. Lett., 266, 431, (1997).
18. E. G. M. Kuijpers, A. K. Breedijk, W. J. J. van der Wal, and J. W. Geus, “Chemisorption of Methane on Ni/SiO2 Catalysts and Reactivity of the Chemisorption Products Toward Hydrogen, ” J. Catal., 81, 429, (1983).
19. T. P. Beebe, Jr., D. W. Goodman, B. D. Kay, and J. T. Yates, Jr., “Kinetics of the Activated Dissociative Adsorption of Methane on the Low Index Planes of Nickel Single-Crystal Surfaces, ”J. Chem. Phys., 87, 2305, (1987).
20. T.Osaki, H. Masuda, and T. Mori, “Intermediate Hydrocarbon Species for the CO2-CH4 Reaction on Supported Ni Catalysts, ”Catal. Lett., 29, 33, (1994).
21. J. Segner, C. T. Campbell, G. Doyen, and G. Ertl, “Catalytic- Oxidation of Co on Pt(111) - The Influence of Surface-Defects and Composition on the Reaction Dynamics, ” Surf. Sci., 138, 505, (1984).
22. Z. Zhang, X. E. Verykios, S. M. MacDonald, and S. Affrossman, “Comparative Study of Carbon Dioxide reforming of methane to Synthesis Gas over Ni/La2O3 and Conventional Nickel-Based Catalysts, ”J. Phys. Chem., 100, 744, (1996).
23. B. Z. Nikolic, H. Huang, D. Gervasio, A. Lin, C. Fierro, R R. Adzic, and E. B. Yeager, “Electroreduction of Carbon-Dioxide on Platinum Single-Crystal Electrodes - Electrochemical and Insitu FTIR Studies, ” J. Electroanal. Chem., 295, 415, (1990).
24. Sacco, Jr., F. W. A. H. Geurts, G. A. Jablonski, S. Lee, and R. A. Gatell, “Carbon Deposition and Filament Growth on Fe-Foil, Co-Foil, and Ni-Foil Using CH4-H2-H2O-CO-CO2 Gas-Mixtures, ” J. Catal., 119, 322, (1989).
25. A. M. Gadalla and B. Bower, “The Role of Catalyst Support on the Activity of Nickel for Reforming Methane with CO2, ” Chem. Eng. Sci., 43, 3049, (1988).
26. J. T. Richardson and S. A. Paripatyadar, “Carbon-Dioxide Reforming of Methane with Supported Rhodium, ” Appl. Catal. A: General, 61, 293, (1990).
27. Z. L. Zhang and X. E. Verykios, “Carbon-Dioxide Reforming of Methane to Synthesis Gas over Ni/La2O3 Catalysts, ” Appl. Catal. A: General, 138, 109, (1996).
28. N. M. Rodriguez, “A Review of Catalytically Grown Carbon Nano- fibers, ” J. Mater. Res. 8, 3233, (1993).
29. V. A. Tsipouriari, A. M. Efstathiou, Z.L. Zhang and X. E. Verykios, “Reforming of methane with carbon dioxide to synthesis gas over supported Rh catalysis, ” Catal. Today, 21, 579, (1994).
30. H. M. Swaan, V. C. M. Kroll, G. A. Martin and C. Mirodatos, “Deactivation of supported nickel catalysts during the reforming of methane by carbon dioxide, ” Catal. Today., 21, 571, (1994).
31. M. T. Tavares, I. Alstrup, C. A. Berriardo and J. R. Rostrup-Nielsen, “CO Disproportionation on Silica-Supported Nickel and Nickel-Copper Catalysts, ” J. Catal., 147, 525, (1994).
32. V. V. Chesnokov, V. I. Zaikovskii, R. A. Buyanov, V. V. Molchanov and L . M. Plyasova, “Morphology of Carbon from Methane on Nickel- Containing Catalysts, ” Catal. Today, 24, 265, (1995).
33. Y. G. Chen, J. Ren, “Conversion of methane and carbon dioxide into synthesis gas over alumina-supported nickel catalyst, ”Catal. Lett. 29, 39, (1994).
34. A. Lemoniddou, M. A. Goula, I. A. Vasalos “Carbon dioxide reforming of methane over 5 wt.% nickel calcium aluminate catalysts — effect of preparation method, ”Catal. Today, 46 ,175, (1998).
35. S. Wang, G. Q. M. Lu “CO2 reforming of methane on Ni catalysts: Effect of the support phase and preparation technique, ”Appl. Catal. B 16 (1998) 269-277
36. J-H. Kim, D. J. Suh, T-J. Park, K-L. Kim “Effect of metal partical size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts, ”Appl. Catal. A 197, 191, (2000).
37. S. Wang, and G. Q. (Max) Lu “Role of CeO2 in Ni/CeO2-Al2O3 catalysts for carbon dioxide reforming of methane, ” Appl. Catal. B,19, 267, (1998).
38. E. Ruckenstein and Y. H. Hu “Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts, ”Appl. Catal. A,133, 149, (1995).
39. M. C. J. Bardford, M. A. Vannice “Catalytic reforming of methane with carbon dioxide over nickel catalysts: I. Catalyst characterization and activity, ”Appl. Catal. A,142, 73, (1996).
40. J. A. Montoya, E. Romero-Pascual, C. Gimon, P. Del Angel, A. Monzon “Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts prepared by sol-gel, ”Catal. Today,63, 71, (2000).
41. H. Y. Wang, E. Ruckenstein “Carbon dioxide reforming of methane to methane to synthesis gas over supported rhodium catalysts: the effect of support, ” Appl. Catal. A,204, 143, (2000).
42. Tauster S. J., S. C. Fung , and R. L. Garten ., “Strong Metal-Support Interactions. Group VIII Noble Metals Supported on TiO2, ”J. Amer. Chem. Soc. ,100, 170, (1978).
43. Tauster S. J. and S. C. Fung., “Strong Metal-Support Intractions: Occurrence among the Binary Oxides of Groups IIA-VB, ”J. Catal., 55, 29, (1978).
44. Burch, R. and Flambard A. R., “Strong Metal-Support Interactions in Nickel/Titania Catalysts:The Impportance of Interfacial Phenomena ”J. Catal., 78, 389, (1982).
45. Stevenson, S. A., Dumesic, J. A., Baker, R. T. K., and Ruckenstein, E., Eds., “Metal-support interactions in catalysis, sintering, and redispersion, ” Van Nostrand-Reinhold, New York, (1987).
46. Haller, G. L., and Resasco, D. E., “Metal Support Interaction - Group-VIII Metals and Reducible Oxides, ” Advances in catalysis, 36, 173, (1989).
47. M. F. Mark and Wilhelm F. Maier, “CO2-Reforming of Methane on Supported Rh and Ir Catalysts, ”J. Catal., 164, 122, (1996).
48. A. Erdohelyi, T. Cserenyi, and F. Solymosi, “Activation of CH4 and Its Reaction with CO2 over Supported Rh Catalysts, ”J. Catal., 141, 287, (1993).
49. D. Qin, J. Lapszewicz, “Study of mixed steam and CO2 Reforming of CH4 to syngas on MgO-supported metals, ”Catal. Today, 21, 551, (1994).
50. F. Solymosi, G. kutsan and A. Erdohelyi, “Catalytic reaction of CH4 with CO2 over alumina-supported Pt metals, ”Catal. Lett., 11, 149, (1991).
51. M. C. J. Bradford, M. A. Vannice, “Catalytic reforming of methane with carbon dioxide over nickel catalysts-Ⅱ.Reaction kinetics, ”Appl. Catal. A: General, 142, 97, (1996).
52. D. Qin, J. Lapszewicz, and X. Jiang, “Comparison of Partial Oxidation and Steam-CO2 to Syngas on MgO-Supported Metal, ”J. Catal., 159, 140, (1996).
53. J. Nakamura, K. Aikawa, K. Sato and T. Uchijima, “Role of support in reforming of CH4 with CO2 over Rh Catalysts, ”Catal. Lett., 25, 265, (1994).
54. C. N. Satterfield, “Heterogeneous Catalysis in Industrial Practice,”McGraw-Hill International Edition, New York, 1987.
55. Y. Amenomiya, and R. J. Cvetanovic,“Application of Flash-Desorption Method to Catalyst Studies.I. Ethylene-Alumina System,”J. Phys. Chem., 67, 144, (1963).
56. Alan Jones, Brian McNicol, “Temperature-Programmed Reduction for Solid Materials Characterization,”. Marcel Dekker, Inc., New York.
57. 戴玉龍,’’氧化釔添加對鎳觸媒擔載在氧化鈰擔體上行二氧化碳與甲烷重組反應之研究’’,碩士論文,清華大學化工所,民國八十九年。
58. 李昆崇,’’以氧化釔穩定化氧化鋯擔載銅-鉻觸媒行甲烷和一氧化碳氧化反應之研究’’,碩士論文,清華大學化工所,民國八十六年。
59. El Fallah, J., Boujana, S., Dexpert, H., Kiennemann, A., Majerus, J., Touret, O., Villain, F., and Le Normand, F., “Redox Processes on Pure Ceria and on Rh/CeO2 Catalyst Monitored by X-rayAbsorption (Fast Acquisition Mode), ”J. Phys. Chem., 98, 5522, (1994).
60. 楊曉文,’’以氧化釔穩定化氧化鋯擔載銅-鉻觸媒行程溫還原反應之研究’’,碩士論文,清華大學化工所,民國八十六年。
61. 蕭尚吉吉,’’以Ni/SDC觸煤行甲烷與二氧化碳重組反應之研究’,碩士論文,清華大學化工所,民國九十年。
62. 竇維平,’’利用螢石型導氧離子氧化物擔體提昇氧化銅觸媒還原性及催化活性之研究’’,博士論文,清華大學化工所,民國八十四年。
63. P. Chen, H. B. Zhang, G. D. Lin, K. R. Tsai “Development of coking-resistant Ni-based catalyst for partial oxidation and CO2-reforming of methane to syngas, ” Appl. Catal. A,166, 343, (1998).
64. A. Monzon, E. Romeo, C. Royo, R. Trujillano, F. M. Labajos, V. Rives, “Use of hydrotalcites as catalytic precursor of multimetallic mixed oxides.Application in the hydrogenation of acetylene, ” Appl. Catal. A,185, 53, (1999).
65. Yao, H. C., and Yu Yao, Y. F., “Ceria in Automotive Exhaust Catalysts I. Oxygen Storage, ”J. Catal., 86, 254, (1984).
66. Johnson, M. F. L., and Mooi, J., “Cerium Dioxide Crystallite Sizes by Temperature-Programmed Reduction, ”J. Catal., 103, 502, (1987).
67. A. A. Lemoniddou, M. A. Goula, I. A. Vasalos “Carbon dioxide reforming of methane over 5 wt.% nickel calcium aluminate catalysts — effect of preparation method, ”Catal. Today, 46, 175, (1998).
68. M.G. Gonzalez, N. N. Nichio, B. Moraweck, G. Martin “Role of Chromium in the stability of Ni/Al2O3 catalysts for natural gas reforming, ”Materials Letters 45, 15, (2000).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊