跳到主要內容

臺灣博碩士論文加值系統

(18.208.126.232) 您好!臺灣時間:2022/08/12 02:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王永元
研究生(外文):Yung-Yuan Wang
論文名稱:表面張力與接觸角變化對覆晶封裝底部填膠流動的影響
論文名稱(外文):The Effect of Surface Tension and Contact Angle on the Filling Behavior of Flip-Chip Underfill Dispensing Process
指導教授:張榮語張榮語引用關係
指導教授(外文):Rong-Yen Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:97
中文關鍵詞:覆晶封裝3維流動分析前進波前底部填膠有限體積法表面張力動態接觸角
相關次數:
  • 被引用被引用:3
  • 點閱點閱:606
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是以理論及數值分析探討覆晶封裝的點膠式底部填膠(Dispensing Process for Flip Chip Underfill)過程中,封膠(Encapsulant)表面張力及封膠和基板、錫球間接觸角變化(Dynamic Contact Angle)對流動的影響。利用建立在三維共位體心有限體積法(Collocated Cell-Centered Finite Volume Method)下的計算流程,計算充填過程中的流場,預測波前的形狀及位置。
由於點膠式底部填膠係利用表面張力造成的毛細作用來促使封膠充填晶片底部,因此必須準確的計算表面張力以及封膠在牆壁面上的附著力。本研究使用連續表面力模式(Continuum surface force model,CSF model)來計算封膠表面張力,並導入Hoffman動態接觸角模式,計算封膠和基板、封膠和錫球之間接觸角的動態變化,以準確估算封膠在牆壁面上的附著力大小。
以往對於底部填膠流動的研究,多忽略封膠的動態接觸角以及錫球在厚度方向對於流動的影響,本研究藉由設定不同的動態接觸角模式參數,發覺封膠的接觸角變化影響充填時間甚鉅,並進一步對錫球牆面設定不同的接觸角,發覺錫球的存在會同時影響充填時間和充填圖形,因此動態接觸角和錫球的影響不可忽略。藉由設定適當的模式參數與牆壁面條件,本研究已可準確地模擬底部填膠過程。
中文摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
重要名詞中英對照 X
第一章、緒論 1
1-1研究目的 1
1-2覆晶封裝簡介 3
1-3底部填膠 5
1-3-1底部填膠的功能 5
1-3-2封膠的材料特性 6
1-3-3底部填膠的方法 9
1-4表面張力、接觸角和潤濕 10
1-4-1表面張力 10
1-4-2接觸角和潤濕 11
第二章、文獻回顧 13
2-1覆晶封裝文獻回顧 13
2-2硬化反應動力模式 14
2-3熱固性樹脂黏度模式 16
2-4表面張力 21
2-4-1平衡狀態下的表面張力關係 21
2-4-2動態下的表面張力關係 23
2-4-3 Hoffman模式簡介 27
2-4-4連續表面力模式 30
2-5共位體心有限體積法 30
第三章、底部填膠的理論架構 32
3-1基本假設與簡化 32
3-2統御方程式 33
3-3反應動力方程式 34
3-4表面張力模式 34
3-5動態接觸角模式 35
第四章、數值方法 36
4-1統御方程式的離散 36
4-1-1動量方程式的離散 36
4-1-2連續方程式的離散 38
4-1-3能量方程式的離散 38
4-1-4體積分率輸送方程式的離散 39
4-2反應動力方程式的離散 39
4-3表面張力方程式的離散 40
4-5動態接觸角模式的參數計算 44
4-6初始條件與邊界條件之設定 47
4-7 SIMPLE去耦合疊代法 48
4-8計算流程 50
第五章、結果與討論 52
5-1晶片幾何與計算網格 52
5-2材料參數及製程參數 55
5-3固定接觸角的模擬結果 56
5-4動態接觸角的影響 61
5-5錫球對於流動的影響 65
5-6點膠速度對於流動的影響 73
第六章、結論與展望 78
參考文獻 80
1. 楊省樞,”覆晶技術”,工業材料, 1997。
2. 楊省樞、李宗賢,”透析覆晶構裝”,工業材料, 1998。
3. S. C. Machuga, S. E. Lindsey, K. D. Moore, and A. F. Skipor, “Encapsulation of Flip Chip Structures”, IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium. pp.53-58, 1992.
4. 李宗銘,”覆晶構裝用液狀封裝材料技術與應用”,工業材料, 1997.
5. A. Babiarz, A. Lewis, A. Guttoriello, U. Kappeller, ”Encapsulation and Underfilling Techniques for Advanced IC Packaging”, Asymetk, tech paper, 1997.
6. A. W. Adamson, Physical Chemistry of Surface, John Wiley & Sons, New York, 1967.
7. D. Suryanarayana, T. Y. Wu, and J. A. Varcoe, ”Encapsulants used in Flip-Chip Package”, Pro. 43rd ECTC, 1993, Orlando, FL.
8. A. A. O. Tay, Z. M. Huang, J. H. Wu and C. Q. Cui, “Numerical Simulation of the Flip-Chip Underfilling Process”, IEEE/CPMT Electronic Packaging Technology Conference, Oct. 1997, Singapore.
9. Matthew K. Schwiebert and William H. Leong, “Underfill Flow as Viscous Flow Between Parallel Plates Driven by Capillary Action”, IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, 1995.
10. H. Yang, S. Bayyuk, A. Krishnan, and A. Przekwas, “Computational Simulation of Underfill Encapsulation of Flip-Chip ICs Part I: Flow Modeling and Surface-Tension Effects”, Electronic Component and Technology Conference, 1998.
11. G. Ni, M. H. Gordon, W. F. Schmidt and A. Muyshondt, “Experimental and Numerical Study of Underfill Encapsulation of Flip-Chips Using Conductive Epoxy Polymer Bumps”, Electronic Components and Technology Conference, 1997.
12. P. Fine, B. Cobb, and L. Nguyen, “Flip Chip Underfill Flow Characteristics and Prediction”, IEEE Transactions on Components and Packaging Technologies, vol. 23, no. 3, September 2000.
13. Sejin Han and K. K. Wang, “Analysis of the Flow of Encapsulant During Underfill Encapsulation of Flip-Chips”, IEEE Transactions on Components Packaging , and Manufacturing Technology-Part B, vol. 20, NO. 4, pp.424, 1997.
14. R. B. Prime, “Differential Scanning Calormetry of the Epoxy Cure Reaction”, Polymer Engineering and Science, vol. 13, pp. 365, 1973.
15. K. Dusek and M. Bkega, ”Curing of Epoxide Resins : Model Reaction of Curing with Amine”, Journal of Polymer Science Part A: Polymer Chemistry, vol. 15, pp. 2393, 1977.
16. S.Y. Pusatcioglu, A. L. Fricke and J. C. Hassler, “Heats of Reation and Kinetics of a Thermoset Polyester”, Journal of Applied Polymer Science, vol. 24, pp. 937, 1979.
17. A. Moroni, J. Mijovic, E. M. Pearce and C. C. Foun, ”Cure Kinetics of Epoxy Resins and Arometic Diamines”, Journal of Applied Polymer Science, vol. 32, pp. 3761, 1986.
18. M. E. Ryan and A. Dutta, “Kinetics of Epoxy Cure : A Rapid Technique for Kinetic Parameter Estimation”, Polymer Journal, vol. 20, pp. 203, 1979.
19. J. Mijovic, ”Curing Kinetics of Neat Versus Reinforces Epoxies”, Journal of Applied Polymer Science, vol. 31, pp. 1177, 1986.
20. M. A. Goloub and N. R. Lerner, “Kinetic Study of Polymerization /Curing of Filament-Wound Composite Epoxy Resin System with Aromatic Diamines”, Journal of Applied Polymer Science, vol. 32, pp. 5251, 1986.
21. K. Horie, “Calorimetric Investigation of Polymerization React-ions. III Curing Reaction of Epoxides with Amine”, Journal of Polymer Science, A-1, vol. 8, pp. 1357, 1970.
22. F. G. Mussatti and C. W. Macosko, ”Rheology of Network Forming Systems”, Polymer Engineering and Science, vol. 13, pp. 236, 1973.
23. R. P. White, Jr., “ Time-Temperature Superpositioning of Viscosity-Time Profiles of Three High Temperature Epoxy Resins”, Polymer Engineering and Science, vol. 14, pp. 50, 1974.
24. M. B. Roller, “Characterization of the Time-Temperature-Viscosity Behavior of Curing B-Staged Epoxy Resin”, Polymer Engineering and Science, vol. 15, pp. 406, 1975.
25. A. V. Tungare, G. C. Martin and J. T. Gotro, ”Chemorheological Characterization of Thermoset Cure”, Polymer Engineering and Science, vol. 28, pp. 1071, 1988.
26. J. M. Castro, C. W. Macosko and S. J. Perry, ”Viscosity Change during Urethane Polymerization with Phase Separation”, Polymer Composites, vol. 25, pp. 82, 1984.
27. A. B. Spoelstra, G. W. Peter, and H. E. Meijer, “Chemorheology of a Highly Filled Epoxy Compound”, Polymer Engineering and Science, vol. 36, no. 16, 1996.
28. R. Y. Chang, P. C. Tsai and W. H. Yang, “Modeling of Chemorheological Behavior of A Highly Filled Epoxy Modeling Compound for the Plastic Encapsulation of Microelectronics”, submit by Polymer Engineering and Science, 1998.
29. P. S. Laplace de, Traite de Mechanique Celeste, Bachelier, Paris, 1829.
30. T. Young, Miscellaneous Works, G. Peacock, ed., J. Murray, London, ,vol. I, pp.418, 1885.
31. H. Schonhorn, H. Frisch, and T. H. Kwei, “Kinetics of wetting of surfaces by polymer melts”, Journal of Applied Physics, vol. 37, pp. 4967-4973, 1966.
32. S. Newman, “Kinetics of wetting of surfaces by polymers:Capillary flow”, Journal of Colloid and Interface Science, vol. 26, pp. 209-213, 1968.
33. T. D. Blake, “Kinetics of Liquid/Liquid Displacement.”, Journal of Colloid and Interface Science, vol. 30, NO.3, 1969.
34. T. D. Blake, “Wetting kinetics-How do wetting lines move?”, AICHE International Symposium on the mechanics of thin-film coating, 6-10, March 1988, New Orleans, LA.
35. R. L. Hoffman, “A Study of Advancing Interface I. Interface Shape in Liquid-Gas Systems”, Journal of Colloid and Interface Science, vol. 50, NO.2, pp. 228-241, 1974.
36. R. L. Hoffman, “A Study of Advancing Interface II. Theoretical Prediction of the Dynamic Contact Angle in Liquid-Gas Systems”, Journal of Colloid and Interface Science, vol. 94, NO.2, pp. 470-486, 1983.
37. Y. D. Shikhmurzaev, “The moving contact line on a smooth solid surface”, International Journal of Multiphase Flow, vol. 19, pp.589-610, 1993.
38. S. Sciffer, “A phenomenological model of dynamic contact angle”, Chemical Engineering Science, vol. 55, pp. 5933-5936, 2000.
39. B. W. Cherry and C. M. Holmes, “”, Journal of Colloid and Interface Science, vol. 29, pp.174, 1969.
40. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Chap. 1, John Wiley & Sons, New York, 1960.
41. J.U. Brackbill, D.B. Kothe, and C. Zemach, “A Continuum Method for Modeling Surface Tension”, Journal of Computational Physics vol. 100, pp. 335-354, 1991.
42. 楊文賢,“有限體積法在塑膠射出成型三維流動分析之研究”,博士論文,清華大學,2001。
43. R.Y. Chang and W.H. Yang, “Numerical Simulation of Mold Fill in Injection Molding Using A Three-Dimensional Finite Volume Approach”, International Journal for Numerical Methods in Fluids ( received 22 November 2000).
44. P. K. Khosla and S. G. Rubin, “A Diagonally Dominant Second-Order Accurate Implicit Scheme”, Computer Fluids, vol. 2, pp. 207-209, 1974.
45. O. Ubbink and R.I. Issa , “A Method for Capturing Sharp Fluid Interfaces on Arbitary Meshes”, Journal of Computational Physics, vol. 153, pp. 26-50, 1999.
46. S.V. Patankar, “Numerical Heat Transfer and Fluid Flow”, Hemiphere, New York, 1980.
47. C. M. Rhie and W. L. Chow, A numerical Study of the Turbulent Flow Past and Isolated Airfoil with Trailing Edge Separation, AIAA Journal, vol. 21, pp. 1525-1532, 1983.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top