跳到主要內容

臺灣博碩士論文加值系統

(3.238.98.39) 您好!臺灣時間:2022/09/26 10:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃如玉
研究生(外文):Ru-Yu Hwang
論文名稱:利用微生物共代謝三氯乙烯之研究
論文名稱(外文):Cometabolic Biodegradation of Trichloroethylene by A Toluene-Oxidizing Microorganism
指導教授:黃世傑黃世傑引用關係
指導教授(外文):Shyh-Jye Hwang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:94
中文關鍵詞:共代謝三氯乙烯生物反應器
外文關鍵詞:Cometabolic BiodegradationTrichloroethylenebioreactor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:498
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是利用微生物以生物好氧處理的方式來共代謝三氯乙烯。在液體批次試驗結果可知,微生物最適反應及培養溫度為30℃,而最適培養pH值為7.0。因此,利用此條件以不同濃度的甲苯來共代謝濃度為0.98 mg/L、1.96 mg/L及3.93 mg/L之三氯乙烯,在不重覆添加甲苯的情況下,三組不同濃度之三氯乙烯皆是在甲苯與三氯乙烯的濃度比於38.6時。當在甲苯與三氯乙烯可共代謝的濃度比之下,若有與甲苯同濃度之苯存在,會造成微生物無法共代謝三氯乙烯,可知在有苯同時存在時,可能對微生物共代謝三氯乙烯有較大負面的影響。
在反應器方面,利用氣泡床生物反應器與活性碳生物濾床反應器來處理三氯乙烯及甲苯廢氣,發現在三相活性碳生物濾床之滯留時間愈長去除效率愈佳,而氣泡床生物反應器則在較短的滯留時間下,去除效率比三相活性碳生物濾床還要高,此外,在固定三氯乙烯濃度為0.3 g/m3,氣體流量控制在150 ml/min下,氣泡床生物反應器比三相活性碳生物濾床更可以較低的甲苯濃度來代謝最大量的三氯乙烯,有效地利用甲苯來共代謝三氯乙烯,但過高的甲苯濃度會有競爭抑制的現象產生,使去除效率及能力下降。而在相同的氣體流量下,固定甲苯濃度為2.1 g/m3,三相活性碳生物濾床在三氯乙烯負載量約在5~64 g/m3-hr,甚至超過時,至少有80~90%的去除效率,氣泡床生物反應器則在三氯乙烯負載量約在5~53 g/m3-hr時,可達90%以上的去除效率,但過高的三氯乙烯濃度則會影響其本身及甲苯的去除效率和去除能力。

Trichloroethylene (TCE) is readily mineralized under aerobic condition by cometabolism of non-specific oxygenase produced by toluene-oxidizing microorganisms. The objective of this study was to investigate biodegradation of TCE by a toluene-oxidizing microorganism in an aqueous-phase batch reactor, a bubble column bioreactor and a three phase activated carbon biofilter. The aqueous-phase batch experiments were conducted in which the concentration of TCE was held constant (0.98 mg/l, 1.96 mg/l or 3.93 mg/l) whereas the concentration of toluene was varied. The results showed that biodegradation of TCE was observed when the toluene/TCE concentration ratio was greater than 38.6. In contrast to TCE, nearly 100 % removal efficiency of toluene was observed in these experiments. Moreover, with mixtures of TCE, toluene and benzene, both toluene and benzene were biodegraded completely by the toluene-oxidizing microorganism, but TCE was not biodegraded.
The removal efficiency of gaseous TCE in the bubble column bioreactor was above 90 % at a retention time of 1.26 min while inlet concentrations of TCE and toluene were 2.06 g/m3 and 2.33 g/m3, respectively. For the three phase activated carbon biofilter, 70 % removal efficiency of gaseous TCE was obtained at the same operating condition. Thus, the bubble column had a better removal efficiency than the three phase carbon biofilter. At the gas flow rate of 150 g/m3-hr and a low TCE concentration of 0.3 g/m3, the bubble column bioreactor could use a lower toluene concentration to sustain the biomass growth and to maximize the TCE biodegradation than the three phase activated carbon biofilter. In addition, at the same gas flow rate and the toluene concentration of 2.1 g/m3, the removal efficiency of the bubble column bioreactor was 90% above for TCE loadings from 5~53 g/m3-hr, while that of the three phase activated carbon biofilter was 80~90% for TCE loadings from 5~64 g/m3-hr. However, the removal efficiency decreased at high concentrations of TCE or toluene, and the decrease in the bubble column was more dramatic than that in the three phase activated carbon biofilter. As a result, at high concentrations of TCE or toluene the three phase activated carbon biofilter, had a higher removal efficiency than the bubble column bioreactor.

摘要
謝誌
總目錄 i
圖目錄 iv
表目錄 viii
第一章 緒論 1
1-1研究緣起 1
1-2研究目的 3
第二章 文獻回顧 4
2-1三氯乙烯之概述 4
2-1-1三氯乙烯之特性 4
2-1-2三氯乙烯之毒性 4
2-2三氯乙烯之處理方法 7
2-2-1物理化學處理法 7
2-2-2生物處理法 7
2-3微生物共代謝三氯乙烯之研究 8
2-3-1微生物共代謝三氯乙烯 8
2-3-2甲苯分解菌共代謝三氯乙烯之機制 10
2-4廢氣生物處理系統 15
2-4-1氣泡床生物反應器及三相活性碳生物濾床之限制與優點 19
2-4-2 影響生物反應器效率之因素 19
第三章 實驗材料和方法 22
3-1實驗設備與材料 22
3-1-1生物反應器主體設備 22
3-1-2生物反應器週邊設備 24
3-1-3實驗材料及藥品 26
3-2實驗方法 27
3-2-1微生物菌體量測定 27
3-2-2微生物之懸浮生長及固定化 29
3-2-3菌株保存 29
3-2-4甲苯與三氯乙烯的定量 30
3-2-5批次實驗操作 31
3-2-6生物反應器之操作 33
第四章 結果與討論 38
4-1溫度對三氯乙烯、甲苯去除效率與微生物生長之影響 38
4-2 pH值對三氯乙烯、甲苯去除效率與微生物生長對影響 39
4-3微生物利用共代謝三氯乙烯之批次活性試驗 41
4-3-1三氯乙烯之代謝 43
4-3-2甲苯之代謝 44
4-3-3甲苯與三氯乙烯濃度比對共代謝效率之影響 47
4-4在苯的共同存在下對三氯乙烯代謝效率之影響 51
4-4-1苯、甲苯及三氯乙烯之相互作用關係對其代謝之影響 54
4-5利用不同的生物反應器進行去除效率及去除能力之研究 56
4-6氣體滯留時間對甲苯及三氯乙烯去除效率之影響 58
4-7甲苯進口濃度變化對甲苯及三氯乙烯去除效率及能力之影響 59
4-7-1甲苯進口濃度變化對甲苯及三氯乙烯去除效率之影響 59
4-7-2甲苯進口濃度變化對甲苯及三氯乙烯去除能力之影響 62
4-8三氯乙烯濃度變化對甲苯及三氯乙烯去除效率及能力之影響 66
4-8-1三氯乙烯濃度變化對甲苯及三氯乙烯去除效率之影響 66
4-8-2三氯乙烯濃度變化對甲苯及三氯乙烯去除能力之影響 69
4-9生物反應器之比較 72
第五章 結論 74
參考文獻 76
圖目錄
頁次
第二章 文獻回顧
圖2-1氧化酵素進行共代謝示意圖 9
圖2-2 Pseudomonas putida F1對甲苯、苯以及酚的代謝路徑 12
圖2-3不同甲苯分解菌之甲苯代謝路徑 13
圖2-4三氯乙烯代謝的可能路徑 14
圖2-5 廢氣生物處理系統 17
第三章 實驗材料和方法
圖3-1生物反應器實驗裝置 23
圖3-2分光光度計之檢量線 28
圖3-3 三氯乙烯氣體濃度檢量線 36
圖3-4甲苯氣體濃度檢量線 36
圖3-5 實驗操作流程 37
第四章 結果與討論
圖4-1溫度對甲苯、三氯乙烯去除效率與微生物生長之影響 40
圖4-2溫度對三氯乙烯去除效率的影響與代謝後pH值對變化 40
圖4-3 pH值對甲苯、三氯乙烯去除效率與微生物生長之影響 42
圖4-4不同甲苯濃度對三氯乙烯之代謝情況 (固定三氯乙烯濃度為0.98 mg/L) 45
圖4-5不同甲苯濃度對三氯乙烯之代謝情況 (固定三氯乙烯濃度為1.96 mg/L) 46
圖4-6不同甲苯濃度對三氯乙烯之代謝情況 (固定三氯乙烯濃度為3.93 mg/L) 46
圖4-7不同甲苯濃度之代謝情況 (固定三氯乙烯濃度0.98 mg/L) 48
圖4-8不同甲苯濃度之代謝情況 (固定三氯乙烯濃度1.96 mg/L) 48
圖4-9不同甲苯濃度之代謝情況 (固定三氯乙烯濃度3.93 mg/L) 49
圖4-10甲苯與三氯乙烯之濃度比對三氯乙烯去除效率之影響 50
圖4-11甲苯與三氯乙烯之濃度比對甲苯去除效率之影響 50
圖4-12 (A) 在三氯乙烯、甲苯及苯同時存在下,其各化合物被代謝的情況(甲苯與三氯乙烯之濃度比為38.6 ) 52
圖4-12 (B) 在三氯乙烯、甲苯及苯同時存在下,其各化合物被代謝的情況(甲苯與三氯乙烯之濃度比為54.1 ) 52
圖4-12 (C) 在三氯乙烯、甲苯及苯同時存在下,其各化合物被代謝的情況(甲苯與三氯乙烯之濃度比為69.5 ) 53
圖4-13三氯乙烯單獨存在及其與苯、甲苯共同存在下,對三氯乙烯代謝效率之影響 55
圖4-14苯單獨存在及其與甲苯、三氯乙烯共同存在下,對苯代謝效率之影響 55
圖4-15苯與甲苯、三氯乙烯共同存在下,對苯代謝效率之影響 57
圖4-16甲苯單獨存在及其與苯、三氯乙烯共同存在下,對甲苯代謝效率之影響 57
圖4-17三相活性碳生物濾床,氣體滯留時間對甲苯及三氯乙烯去除效率之影響 60
圖4-18氣泡床生物反應器,氣體滯留時間對甲苯及三氯乙烯去除效率之影響 60
圖4-19三相活性碳生物濾床,甲苯進口濃度對甲苯及三氯乙烯去除效率之關係 63
圖4-20氣泡床生物反應器,甲苯進口濃度對甲苯及三氯乙烯去除效率之關係 63
圖4-21三相活性碳生物濾床,甲苯負載量與甲苯去除能力之關係 64
圖4-22氣泡床生物反應器,甲苯負載量與甲苯去除能力之關係 64
圖4-23三相活性碳生物濾床,甲苯濃度與三氯乙烯去除能力之關係 65
圖4-24氣泡床生物反應器,甲苯濃度與三氯乙烯去除能力之關係 65
圖4-25三相活性碳生物濾床,三氯乙烯進口濃度對甲苯及三氯乙烯去除效率之關係 68
圖4-26氣泡床生物反應器,三氯乙烯進口濃度對甲苯及三氯乙烯去除效率之關係 68
圖4-27三相活性碳生物濾床,三氯乙烯進口負載量與三氯乙烯去除能力之關係 70
圖4-28氣泡床生物反應器,三氯乙烯進口負載量與三氯乙烯去除能力之關係 70
圖4-29三相活性碳生物濾床,三氯乙烯濃度與甲苯去除能力之關係 71
圖4-30氣泡床生物反應器,三氯乙烯濃度與甲苯去除能力之關係 71
表目錄
頁次
第二章 文獻回顧
表2-1三氯乙烯之性質 5
表2-2三氯乙烯對人體健康之影響 6
表2-3不同菌種分解三氯乙烯之酵素 11
表2-4三種廢氣生物處理系統之特性分析 18
表2-5氣泡床生物反應器與三相活性碳生物濾床之優、缺點 21
第三章 實驗材料和方法
表3-1 無機營養源組成成份及每升溶液含量 26
表3-2 微量元素組成成份及每升溶液含量 27
表3-3 冷凍培養基之組成 29
表3-4 Trace GC-2000/FID之操作條件 30
表3-5溫度對三氯乙烯、甲苯去除效率與微生物生長之影響(批次實驗操作條件) 32
表3-6 pH值對三氯乙烯、甲苯去除效率與微生物生長之影響(批次實驗操作條件) 32
表3-7甲苯與三氯乙烯濃度比對共代謝效率之影響(批次實驗操作條件) 32
表3-8在苯的共同存在下對三氯乙烯代謝效率之影響(批次實驗操作條件) 33
表3-9氣體流量對三相活性碳生物濾床處理甲苯及三氯乙烯之影響實驗操作條件 34
表3-10氣體流量對氣泡床生物反應器處理甲苯及三氯乙烯之影響實驗操作條件 34
表3-11固定三氯乙烯進口濃度改變甲苯進口濃度,三相活性碳生物濾床實驗操作條件 35
表3-12固定三氯乙烯進口濃度改變甲苯進口濃度,氣泡床生物反應器實驗操作條件 35
表3-13固定甲苯進口濃度改變三氯乙烯進口濃度,三相活性碳生物濾床實驗操作條件 35
表3-14固定甲苯進口濃度改變三氯乙烯進口濃度,氣泡床生物反應器實驗操作條件 36
第四章 結果與討論
表4-1 在相同氣體滯留時間下,甲苯及三氯乙烯進口濃度的去除效率及去除能力之比較 73

Alvarez, P. J. J. and Vogel, T. M., 1991, Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries, Appl. Environ. Microbiol., 57: 2981-2985.
Annadurai, G., Balan, S. M., and Murugesan, T., 2000, Design of experiments in the biodegradation of phenol using immobilized Psudomonas pictorum (NICM-2077) on activated carbon, Biopro. Engrg., 22:101-107.
Arcangeli, J. P. and Arvin, E., 1997, Modeling of the Cometabolic Biodegradation of Trichloroethylene by Toluene-Oxidizing Bacteria in a Biofilm System, Environ. Sci. Technol., 31:3044-3052.
Bielefeldt, A. R. and Stensel, H. D., 1999, Modeling Competitive Inhibition Effects During Biodegradation of BTEX Mixtures, Wat. Res., 33:707-714.
Bouwer, E. J., Rittmann, B. E., and Mccarty, P. L., 1981, Anaerobic degradation of halogenated 1- and 2-carbon organic compounds, Environ. Sci. Technol., 15: 596-602.
Cox, C. D., Woo, H. J., and Robinson, K. G., 1998, Cometabolic biodegradation of trichloroethylene (TCE) in the gas phase, Wat. Sci. Tech., 37:97-104.
Chang, H. L. and Alvarez-Cohen, L., 1995, Transformation Capacities of Chlorinated Organics by Mixed Cultures Enriched on Mathane, Propane, Toluene, or Phenol, Biotechnol. Bioeng., 45:440-449.
Chang, H. L. and Alvarez-Cohen, L., 1995, Model for the Cometabolic Biodegradation of Chlorinated Organics, Environ. Sci. Tech., 29:2357-2367.
Clapp, L. W., Regan, J. M., Ali, F., Newman, J. D., Park, J. K., and Noguera, D. R., 1999, Activity, Structure, and Stratification of Membrane-Attached Methanotrophic biofilms Cometabolically Degrading Trichloroethylene, Wat. Sci. Tech., 39:153-161.
El-Farhan, Y. H., Scow, K. M., Fan, S., and Rolston D. E., 2000, Bioremediation and Biodegradation, J. Environ. Qual., 29:778-786.
Ensley, B. D. and Kurisko, P. R., 1994, A Gas Lift Bioreactor for Removal of Contaminats From the Vapor Phase, Appl. Environ. Microbiol., 60: 285-290.
Gossett, J. M., 1987, Measurement of Henry’s Law constant for C1 and C2 chlorinated hydrocarbons, Environ. Sci. Technol., 21: 202-208.
Hecht, V., Brebbermann, D., Bremer, P., and Deckwer, W. D., 1995, Cometabolic Degradation of Trichloroethylene in a Bubble Column Bioscrubber, Biotechnol. Bioeng., 47:461-469.
Hopkins, G. D., Munakata, J., Semprini, L., and McCarty, P. L., 1993a, Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms, Appl. Environ. Mirobiol., 59:2277-2285.
Jorio, H., Bibeau, L., Viel, G., and Heitz, M., 2000, Effects of gas flow rate and inlet concentration on xylene vapors biofiltration performance, Chemical. Engineering Journal., 76:209-221.
Kim, J. O., 1997, Gaseous TCE and PCE Removal by an Activated Carbon Biofilter, Biopro. Engrg., 16:331-337.
Kim, J. O., Terkonda, P. K., and Lee, S. D., 1998, Gaseous CAH removal by Biofiltration in presence and absence of a nonionic surfactant, Biopro. Engrg., 19:253-259.
Kenneth, F. R., Douglas, C. M., and Julia D. B. R., 2000, Biodegradation kinetics of Benzene, Toluene, and Phenol as Single and Mixed Substrates for Pseudomonas putida F1, Biotechnol. Bioeng., 69:385-400.
Landa, A. L., Sipkema, E. M., Weijma, J., Beenackers, A. A. C. M., Dolfing, j., and Janssem, D. B., 1994, Cometabolic Degradation of Trichloroethylene by Pseudomonas cepacia G4 in a Chemostat with Toluene as the Primary Substrate, Appl. Environ. Mirobiol., 60:3368-3374.
Lu, C.-J., Lee, C. M., and Chung, M.-S., 1998, The comparison of trichloroethylene removal rates by methane-and aromatic-utilizing microorganisms, Wat. Sci. Tech., 38:19-24.
Miller, R. E. and Guengerich, F. P., 1983, Metabolism of trichloroethylene in isolated hepatocytes, microsomes, and reconstituted enzyme systems containing cytochrome P-450, Cancer Res., 43: 1145-1152.
Misra, C. and Gupta, S. K., 2001, Hybrid Reactor for Priority Pollutant-Trichloroethylene Removal, Wat. Res., 35:160-166.
Murray, K. and Williams, P. A., 1974, Role of catechol and the methylcatechols as inducers of aromatic metabolism in Pseudomonas putida, J. Bacteriol., 117: 1153-1157.
Neal, A. and Loehr, R. C., 2000, Use of biiofilters and suspended-growth reactors to treat VOCs, Was. Manag., 20:59-68.
Nakano, Y., Hua, L. Q., Nishijima, W., Shoto, W., and Okada, M., 2000, Biodegradation of Trichloroethylene (TCE) Adsorbed on Granular Activated Carbon (GAC), Wat. Res., 34:4139-4142.
Nelson, M. J. K., Montgomery, S. O., Mahaffey, W. R., and Pritchard, P. H., 1987, Biodegradation of Trichloroethylene and Involvement of an Aromatic Biodegradative pathway, Appl. Environ. Microbiol., 53:949-954.
Nelson, M. J. K., Montgomery, S. O., and Pritchard, P. H., 1988, Trichloroethlyene metabolism by microorganisms that degrade aromatic compounds, Appl. Environ. Microbiol., 54:604-606.
Shields, M. S., Montgomery, S. O., Chapmen, P. J., Cuskey, S. M., and Pritchard, P. H., 1989, Novel pathwy of toluene catabolism in the trichloroethylene-degrading bacterium G4, Appl. Environ. Microbiol., 55:1624-1629.
Shields, M. S., Montgomery, S. O., Chapmen, P. J., Cuskey, S. M., and Pritchard, P. H., 1991, Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene, Appl. Environ. Microbiol., 57:1935-1941.
Shimomura, T., Suda, F., Uchiyama, H., and Yagi, O., 1997, Biodegradation of Trichloroethylene by Methylocystis SP. Strain M Immobilized in Gel Beads in a Fluidized-Bed Bioreactor, Wat. Res., 31:2383-2386.
Shurtiiff, M. M., Parkin, G. F., Weathers, L. J., and Gibson, D. T., 1996, Biotransformation of Trichloroethylene by Phenol-Induced Mixed Culture, J. Envir. Engrg., 122:581-588.
Sipkema, E. M., Koning, W. D., Ganzeveld, K. J., Janssen, D.B., and Beenackers, A. A. C. M., 2000, NADH-Regulated Metabolic Model for Growth of Methylosinus trichosporium OB3b. Cometabolic Degradation of Trichloroethene and Optimization of Bioreactor System Performance, Biotechnol. Prog., 16:189-198.
Syu, M. J. and Wang, Y. W., 1999, Immobilization materials mixed with activated sludge as column biofilters for the treatment of gaseous containing benzene and toluene, Biopro. Engrg., 21:230-244.
Tschantz, M. F., Bowman, J. P., Donaldson, T. L., Bienkowski, P. R., Strong-Gunderson, J. M., Palumbo, A. V., Herebes, S. E., and Sayler, G. S., 1995, Methanotrophic TCE Biodegradation in a Multi-Stage Bioreactor, Environ. Sci. Technol., 29:2079-2082.
Wackett, L. P., Brusseau, G. A., Householder, S. R., and Hanson, R. S., 1989, Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria, Appl. Environ. Microbiol., 55: 2960-2964.
Wackett, L. P. and Gibson, D. T., 1988, Degradation of trichloroethylene by toluene dioxygenase in whole cell studies with Pseudomonas pudita F1, Appl. Environ. Microbiol., 54: 1703-1708
Winter, R. B., Yen, K. M., and Ensley, B. D., 1989, Efficient degradation of tri-chloroethtlene by a recombinant Escherichia coli, Biotechnology, 7:252-285
Woo, H. J., Sanseverino, J., Cox, C. D., Robinsion, K. G., and Sayler, G. S., 2000, The measurement of toluene dioxygenase activity in biofilm culture of Pseudomonas putida F1, J. Microbio. Methods, 40:181-191.
Yimu, D. and Scow, K. M., 1994, Effect of trichloroethylene (TCE) and toluene concentrations on TCE and toluene biodegradation and the population density of TCE and toluene degraders in soil, Appl. Environ. Microbiol., 60:2661-2665
Zylstra, G. J., Wackett, L. P., and Gibson, D. T., 1989, Trichloroethylene degration by Escherichia coli containing the colned Pesudeomonas putida F1 toluene dioxygenase genes, Appl. Environ. Microbiol., 55:3162-3166
行政院勞工委員會, 1997, 物質安全資料表及參考範例
蔡文田, 1992, 含氯有機溶劑之毒性及新陳代謝機制,工業污染防治,43:175-187
邱創汎、王耀銘、張坦卿, 1996, 空氣污染生物處理技術本土化之評析,工業污染防治, 58:111-124
郭家倫、曾迪華、黃雪莉,1998,好氧共代謝生物分解含氯脂肪族化合物之回顧與評析,國立中央大學環境工程學刊, 第五期
官知嫻, 1998, 苯環類分解菌共代謝三氯乙烯, 國立中興大學環境工程研究所碩士論文
唐修穆, 1995, 應用生物濾床處理含揮發性有機化合物(VOCs)廢氣之研究, 國立清華大學化學工程研究所博士論文。
陸德源, 2000, 利用甲苯分解菌處理含三氯乙烯廢氣效率之研究, 國立清華大學化學工程研究所碩士論文。
顏嘉玟, 2001, 利用微生物處理三氯乙烯廢氣之效率研究, 國立清華大學化學工程研究所碩士論文

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top