跳到主要內容

臺灣博碩士論文加值系統

(18.208.126.232) 您好!臺灣時間:2022/08/12 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱文娟
研究生(外文):Chiu Wen Chuan
論文名稱:利用固定化菌體生產酒精之研究
指導教授:陳國誠陳國誠引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:53
中文關鍵詞:固定化酒精
相關次數:
  • 被引用被引用:3
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
酒精的用途廣泛,如燃料、共界面活性劑和溶劑,且隨著環保意識的抬頭,使得其用量有逐漸增加的趨勢。利用微生物發酵反應生產酒精已是目前酒精生產的主要方法。
本論文自市售酒麴分離出之較佳的酒精生產菌株,在批次操作下,探討懸浮菌體與固定化菌體(ALG)的最適生產條件,並在重覆批次的操作下,探討ALG和APU的操作穩定性。
懸浮菌體的最適溫度與pH分別為30℃和4.5,最適葡萄糖濃度為250 gl-1,此時酒精生產力可達0.61 g g-1 cell h-1,其酒精耐受度為8﹪(w/v)。菌體經固定化後,ALG的最適pH值會向右偏移提升至5.0,最適溫度不受固定化影響仍為30℃。當葡萄糖濃度為300 gl-1時,ALG具有最佳的酒精生產力,酒精耐受度亦提高至12﹪(w/v)。
利用固定化顆粒(ALG)之最適條件,以ALG和APU進行重覆批次試驗。結果顯示,ALG和APU的相對發酵活性會隨著批次試驗次數的增加,其產量也隨之增加;由於ALG的機械強度較低,故在經過四次的批次試驗後,大部份的顆粒都破碎不堪使用,而APU經過六次的批次試驗後其相對活性仍維持在100﹪以上。

Ethanol can be used in wide application, like fuel, co-surfanctant and solvent. With increasing the care of environment, the amount of ethanol is growing up. Recently, the main method of ethanol production is fermentation using microorganisms.
In this paper, we used the isolated cell from the ferment for brewing to discuss the optimal production conditions for free cell and immobilized cell with alginate in batch experiments. However, we also observed the operation stability in repeated batch experiments with immobilized cells, including ALG and APU.
The optimal temperature and pH for are 30℃ and 4.5. When the optimal glucose concentration is 250 gl-1, the ethanol productivity is 0.61 g g-1 cell h-1. Its ethanol tolerance is 8 % (w/v). After immobilization , the optimal pH of ALG is shift and increased to 5.0, but the optimal temperature is still 30℃. When the glucose concentration is 300 gl-1, ALG had the best ethanol productivity. However, the ethanol tolerance can be increased to 12 % (w/v).
In the optimal conditions for immobilized cells (ALG), we used ALG and APU for repeated batch experiments. As data shows the relative fermentation capacities and production yield increased with repeated times increased. Due to the mechanical strength of ALG is lower, after fourth time batch experiment most of all are broken and can not be used. After six times of batch experiments, the relative fermentation capacity of APU is still above 100 %.

國立清華大學化學工程學系碩士論文 2002

[1] Hoffman J. Oxygenates: poised for growth. Chemical Marketing Report, March 20, 1995. Schnell, New York.
[2] 煙酒用量統計,臺灣煙酒股份有限公司,2000年
[3] Esser K. and Karsch T. Bacterial ethanol production : advantages and disadvanteages. Process Biochem. 1984; 24: 116-121.
[4] Stewart G.G., Panchal C.J., Russell I. and Sills A.M. Biology of ethanol-producing microorganism. C.C.R.C. 1984; 1(3): 161-188.
[5] Nagodawithana T.W., Castellano C. and Steinkraus K.H. Effect of dissolved oxygen, temperature, initial cell count, and sugar concentration on viability of Saccharomyces cerevisiae in rapid fermentation. Appl. Microbiol. 1974; 28 (3): 383-391.
[6] Roger P.L., Lee K.J. and Tribe D.E. High productivity ethanol fermentation with Zymomonas mobilis. Process Biochem. 1980; 15(6): 7.
[7] Horecker, B.L. Pentose Metabolism in Bacteria. John Wiley & Sons, New York, 1961.
[8] Schneider H., Wang P.Y, Johnson B.F. and Shopsis C. Pentose fermentation by yeasts., in Current Developments in Yeast Research, Stewart, G.G. and Russell, I., Eds., Pergamon Press, Toronto, Can., 1981.
[9] Moniruzzaman M., Dien B.S., Skory C.D., Chen Z.D., Hespell R.B., Ho N.W.Y., Dale B.E. and Bithast R.J. Fermentation of corn fibre sugar by an engineeringed xylose utilizing Saccharomyces yeast strain. World J. Microbiol. Biotechnol. 1997; 13: 341-346.
[10] Toivari M.H., Arstidou A., Ruohonen L. and Penttilä M. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae : importance of xylulokinase (XKS1) and oxygen availability. Metabolic Engineering. 2001; 3: 236-249.
[11] Wu W.T., Chen K.C. and Chiou H.W. On-line optimal control for fed-batch culture of Baker’s yeast production. Biotechnol. Bioeng. 1985; 17: 756-760.
[12] Munir C. and Mohamed A.M. Ethanol production in a membrane recycle bioreactor : conversion of glucose using Saccharomyces cerevisiae. Process Biochem. 1984; 19: 204-208.
[13] O’Brien D.J and Craig Jr. J.C. Ethanol production in a continuous fermentation/membrane pervaporation system. Appl. Microbiol. Biotechnol. 1996; 44: 699-704.
[14] Graeme M.W. Yeast physiology and biotechnology. 1998; John Wiley & Sons, New York.
[15] Horecker H., Rosen O.M., Kowal J., Rosen S., Scher B., Lai C.Y., Hoffee P. and Cremona T. Comparative studies of aldolases and fructose diphosphatases. In Aspects of Yeast Metabolism (eds Millers A.K. and Krebs H.) 1968; 71-103. Blackwell Scientific Publications, Oxford and Edinburgh.
[16] Rosen, K. Yeast Biotechnology. D. R. Beerry, I. Russel and G. G. Stewart Eds., George Allen & Unwin, London. 1987; 471-500.
[17] Fleet GH, Heard GM. Yeasts-Growth during fermentation. In : Fleet GH, editor. Wine Microbiology and Biotechnology. Grey, Switzerland: Harwood Academic Publisher. 1993; 27-54.
[18] Van Uden N. Effect of alcohols on the temperature relations of growth and death in yeasts. In : van Uden V, editor. Alcohol Toxicity in Yeasts and Bacteria. Boca Raton, FL: CRC Press. 1989; 77-88.
[19] Phaff H.J., Miller M.W. and Mark E.M. The life of yeasts. 2nd edn. Harvard University Press, Cambridge (USA) and London (UK).
[20] Hacking A.J., Taylor I.W.F. and Hanas C.M. Selection of yeast able to produce ethanol from glucose at 40℃. Appl. Microbiol. Biotechnol. 1984; 19: 361-363.
[21] Porter L. J. and Ough C.S. The effect of ethanol, temperature, and dimethyl dicarbonate on viability of Saccharomyces cerevisiae montrachet No.522 in wine. Am. J. Enol. Vitric. 1982; 33(4): 222-225.
[22] Gough S., Flynn O., Hack C.J. and Marchant R. Fermentation of molasses using a thermotolerant yeast, Kluyverimyces marxianus IMB3 : simplex optimization of media supplement. Appl. Microbiol. Biotechnol. 1996; 46: 187-190.
[23] Kiransree N., Sridhar M. and Venkateswar Rao L. Characterisation of thermotolerant, ethanol tolerant fermentative Saccharomyces cerevisiae for ethanol production. Bioprocess Eng. 2000; 23: 243-246.
[24] Oliver-Neto P. and Yokoya F. Effects of nutritional factors on growth of Lactobacillius fermentum with Saccharomyces cerevisiae in alcoholic fermentation. Revista de Microbiologia (São Paulo) 1997 ; 28: 25-31.
[25] Essia-Ngang J. J. E., Letourneau F. and Villa P. Alcoholic fermentation of beet molasses : effects of lactic acid on yeast fermentation parameters. Appl. Microb. Biotechnol. 1989; 31: 125-128.
[26] Martiny S.C. Analysis and stimulation of biochemical systems. Amsterdam 8th Meeting 25. 1972; 387.
[27] Olivero I., Ruiz-Macias C., Chordi A. and Peinado J.M. Effect of external pH on the growth of Saccharomyces cerevisiae fermentating maltose in batch and continuous culture. Biotechol. Bioeng. 1982; 14: 2725-2729.
[28] D’Amore T., Panchal C.J., Russell I. and Stewart G. Osmotic pressure effects and intracellular accumulation of ethanol in yeast during fermentation. J. Ind. Microbiol. 1988; 2: 365-372.
[29] Krishnan M.S., Xia Y., Tsao G.T., Kasthurikrishnan N., Srinivasan N. and Cooks R.G. Process engineering of high-ethanol-tolerance yeast for the manufacture of ethanol. Appl. Biochem. Biotechnol. 1995; 51/52: 479-493.
[30] Greenshields R.N. Ethanol. Octagon group, Weizman centenary meeting. 1974; Dec 4.
[31] Casey G.P., Ingledew W.M. Ethanol tolerance in yeast. Crit. Rev. Micro. 1986; 13: 219-280.
[32] Carey V.C. and Ingram L.O. J. Bacteriol. 1983; 154: 1291.
[33] Ingram L.O. and Buttke T.M. Effect of alcohols on microorganism. Adv. Microb. Physiol. 1984; 25: 252-299.
[34] Brown S.W., Oliver S.G., Harrison D.E.F., and Righelato R.C. Ethanol inhibition of yeast growth and fermentation: differences in the magnitude and complexity of the effect. Eur. J. Microbiol. Biotechnol. 1981: 19: 151.
[35] Nagodawithana T.W., Whitt, J.T. and Cutaia A.J. Study of the feedback effect of ethanol on selected enzymes of the glycoltic pathway. J. Am. Soc. Brew. Chemistis 1977; 35:179-.
[36] Sakurai A., Nishida Y., Saito H. and Sakakibara M. Ethanol production by repeated batch culture using yeast cells immobilized within porous cellulose carriers. J. Biosci. Bioen. 200; 90(5): 526-529.
[37] Ikegamai T., Yanagishita H., Kitamoto D. and Haraya K. Accelerated ethanol fermentation by Saccharomyces cerevisiae with addition of activated carbon. Biotechnol. Lett. 2000; 22: 1661-1665.
[38] Shindo S., Takata S., Taguchi H. and Yoshimura N. Development of novel carrier using natural zeolite and continuous ethanol fermentation with immobilized Saccharomyces cerevisiae in a bioreactor. Biotechnol. Lett. 2001: 23: 2001-2004.
[39] Williams D. and Douglas M.M. The Production of ethanol by immobilized yeast cells. Biotechnol. Bioeng. 1981; 13: 1813-1825.
[40] Veliky I.A. and Williams R.E. The production of ethanol by Saccharomyces cerevisiae immobilized in polycation-stabilized calcium alginate gels. Biotechnol. Lett. 1981; 3(6): 275-280.
[41] Nigam J.N., Gogoi B.K. and Bezbaruah R.L. Short communication : Alcoholic fermentation by agar-immobilized yeast cells. World J. Microbiol. Biotechnol. 1998; 14: 457-459.
[42] Shindo S. and Kamimura M. Immobilized of yeast with hollow PVA gel beads. J. Ferm. Bioeng. 1990; 70(4): 232-234.
[43] Gõdia F., Casas C. and Solâ C. A survey of continuous ethanol fermentation systems using immobilized cells. Process Biochem. 1987; April: 43-48.
[44] Kondo A., Shigechi H., Abe M., Matsumoto T., Takahashi S., Ueda M., Tanaka M., Kishimoto M. and Fukuda H. High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Appl. Microbiol. Biotechnol. 2002; 58: 291-296.
[45] Pramote T., Nobuo T. and Yasuji O. Taxonomic study on yeast isolated from Thai conconut sap and Loog Pang and selection of the strain for alcoholic fermentation. Annual Reports of ICME 1981;4:315-332.
[46] Birch R. M. and Walker G. M. Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme Microb. Technol. 2000; 26:678-687.
[47] Pierce Chemical Company. BCA Protein Assay Kit. 1997, U.S. Patent No. 4839295.
[48] Miller G. L. Use of dinitrosalylic acid reagent for determination of reducing sugar. Anal. Chem. 1959 ;31:426-429.
[49] Zeikus J.G. and Ng T.K. Thermophilic saccharide fermentation. In Annual Reports on Fermentation Process, vol. 5. Tsao, G.T., Ed., Academic Press, New York, 1982.
[50] Navrátil M., Ŝturdik E. and Gemeiner P. Batch and continuous mead production with pectate immobilized, ethanol-tolerant yeast. Biotechnol. Lett. 2001; 23: 977-982.
[51] Jirků V. A novel entrapping matrix for yeast-catalyzed ethanol fermentation. Process Biochem. 1999; 34:193-196.
[52] Buzás Zs., Dallmann K. and Szajáni. Influence of pH on the growth and ethanol production of free and immobilized Saccharomyces cerevisiae cells. Biotechnol. Bioeng. 1989; 34: 882-884.
[53] Suchi S. , Modi, D.R. and Garg S.K. Production of ethanol from Guava pulp by yeast strain. Biores. Tech. 1997; 60: 263-265.
[54] Lynd L.R, Ahn H.J., Anderson G., Hill P., Krsey D.S. and Klapatch T. Thermophilic ethanol production. Appl. Biochem. Biotechnol. 1991; 28/29: 549-569.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top