跳到主要內容

臺灣博碩士論文加值系統

(18.204.56.185) 您好!臺灣時間:2022/08/14 02:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝仁傑
研究生(外文):Hsieh Jen-Chieh
論文名稱:矽氧烷/聚胺基甲酸酯薄膜材料之表面性質、電氣性質、熱性質與機械性質研究及其在表面電荷消散方面的應用
論文名稱(外文):Study on the synthesis,physical and electrical properties of Siloxane/Poly(urea-urethane) and their applications on the ESD.
指導教授:馬振基馬振基引用關係
指導教授(外文):C. C. M. Ma
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:151
中文關鍵詞:聚胺基甲酸酯矽氧烷
外文關鍵詞:UrethaneSiloxaneSilicon distributionsurface electrical resistanceXPScontact angleSEM
相關次數:
  • 被引用被引用:3
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究旨在合成以Siloxane(及其衍生物)為軟鏈段(Soft segment)之prepolymer,並利用各種含有陰離子基團、陽離子基團、極性非離子基團等側基官能基之鏈延長劑(chain extender),合成本質型抗靜電材料。再利用薄膜表面極性分佈差異的特殊性質使硬鏈段與siloxane軟鏈段聚集(Accumulation)於材料的兩不同表面,使薄膜表面極性分佈不平均而增強表面抗靜電能力,並討論其表面性質、機械性質。
本研究主要是以prepolymer process 合成出一系列含有不同側鏈極性官能基的鏈延長劑之PDMS based Poly(urea- urethane) (PUU)薄膜材料,再對此高分子材料進行一系列的表面性質測試。其中反應檢測是利用FT-IR對NCO group拉伸吸收峰以及CO拉伸吸收峰的變化來進行。
在表面性質研究部分,由於所製備之PUU薄膜材料之兩面具有特殊的性質差異,因此利用表面水接觸角來對薄膜材料進行表面親水性及疏水性研究,利用XPS來分析表面元素分佈的情況,以SEM來觀察PUU薄膜材料表面型態學,再利用AFM來比較表面粗糙度。表面水接觸角的研究結果顯示薄膜兩面的水接觸角隨著硬鏈段比例的增加差異越大。由於軟鏈段大部分集中於空氣接觸面,而硬鏈段集中於鋁箔接觸面。因此空氣接觸面的表面水接觸角隨著硬鏈段含量的增加幾乎不變,而鋁箔接觸面的表面水接觸角則隨著硬鏈段含量的提高有顯著的增加。
由ESCA表面元素分析發現薄膜的空氣接觸面上所含的氮含量少而矽含量多,且氮/矽含量比隨著硬鏈段含量提升改變不大。然而在鋁箔接觸面上則氮/矽含量比隨著硬鏈段含量增加而有顯著地升高,且其比值明顯的比空氣接觸面上大很多。
經由SEM的microphotograph可觀察到薄膜的空氣接觸面幾乎成一homogeneous的phase,而鋁箔接觸面則隨著硬鏈段的增加而有類似cluster以及aggregation的型態出現,推論此型態的形成是由於軟鏈段的chain folding以及硬鏈段在鋁箔接觸面上的堆疊所造成。研究結果也顯示利用不同的鏈延長劑所製備的PUU會有不同的表面堆疊型態出現。
在AFM的研究中顯示空氣接觸面上的平均粗糙度相對於鋁箔接觸面上的平均粗糙度大很多,且由其剖面圖分析來觀察可以發現到以ethylene glycol及glycerol為chain extender者具有較多鋸齒狀小突起,而以DMPA為chain extender者則無鋸齒狀起伏,而是較大範圍的起伏。比較SEM microphotograph與AFM之3D topography 顯示出不同的chain extender所造成的表面起伏型態與SEM所拍攝而得之表面堆疊型態相當類似,因此可以推論PUU表面硬鏈段的堆疊方式是造成其表面型態的主要因素。
在表面電氣阻抗的研究,本研究利用PUU薄膜材料特殊的表面性質來探討其在不同相對濕度下的表面阻抗值,研究結果發現PUU薄膜材料表面阻抗值在完全乾燥的處理後高達5 ×1014 Ω,而經由70%、85%、100% R.H.的處理後表面阻抗值則可下降至108 Ω 左右,此範圍的表面導電度數值可在高濕度( 85 % ~ 100 % )的環境下作為antistatic 及ESD範圍內的應用。
PUU之機械性質的研究,可經由不同軟硬鏈段比例的調控而得之,PUU薄膜材料的tensile strength分佈由0.2Mpa至8MPa,Elongation則由20%到900%不等,而tensile modulus的分佈則是由2MPa至130 MPa。造成此現象的主因是由於隨著硬鏈段含量的提高,PUU薄膜材料具有氫鍵部分的比例也隨之提高。由於氫鍵提供了高分子鏈段間強大的作用力,因此材料本身的抗張強度以及剛性都會因為材料中氫鍵含量的提高而增強。然而也由於強大的氫鍵作用力影響,材料的伸長量也會因此而大幅度降低。所以隨著硬鏈段比例的提高,tensile strength及tensile modulus皆會有明顯上升的趨勢,而Elongation則會有明顯下降的趨勢。
由熱性質的研究可發現PUU薄膜熱裂解的溫度約在270~290 oC的區間內,其中Chain extender的含量對熱裂解溫度沒有顯著影響(差值皆在10 oC內),但改變Chain extender種類卻會大幅度改變其熱裂解溫度 [5% and 10% weight loss Temperature Glycerol(263~271oC)>DMPA(250~268oC)>Ethylene glycol(243~255oC)]。
A series of PDMS based Poly (urea-urethane) (PUU) with various polar functional groups on their side chain have been prepared by using prepolymer process. FT-IR was used to characterize the structure of the PUU.
Surface polarity properties of the PUU films have been studied by the surface contact angle with water. The hydrophilic and hydrophobic characters of PUU films have been investigated. It was found that the PUU film material possesses different surface properties on the aluminum contacting face and on the air contacting face. Results show that the differences of contact angles between two sides of the PUU film are very significant. The contact angles of the aluminum-contacting side decreased with the increasing of the hard segment content in the PUU film. However, the contact angles of air-contacting side keep almost constant.
X-ray Photoelectron spectra (XPS) or Electronic Scanning chemical Analysis (ESCA) provides surface chemical information. It was found that silicon contents on the air contacting surface and aluminum contacting surface are different. Results indicate that the silicone/nitrogen ratio on the aluminum-contacting surface is higher than that on the air-contacting surface, and the ratio decreases as the hard segment content increased.
Scanning Electron Microscopy (SEM) microphotographs are utilitized to study the surface morphology. Different types of accumulation of PUU between the air (i.e. soft segment) and aluminum (i.e. hard segment)-contacting surface of PUU with different chain extenders were observed.
Atomic Force Microscopy (AFM) topographies are utilitized to study the surface roughness. The difference of roughness among the various chain extender of PUU on the aluminum-contacting surface can be studied by the average roughness (Ra). It was be found that the Ra value of the air-contacting surface is larger than that of the aluminum- contacting surface.
Surface electrical resistance properties of the PUU films have been studied by measuring the surface electrical resistance at different relative humidities. Results show that when the sample was in dry condition, the surface electrical resistance is in the range of 1014 Ω. However, when the sample was conditioned at 70%, 80% and 100% R.H., the surface resistance decreases to 108 Ω. This electrical resistance value could be applied to antistatic and ESD materials for military applications at some middle or high relative humidity.
The mechanical properties of the PUU films material depend on the hard/soft segment ratio in PUU film. The tensile strength of PUU film is ranging from 0.2 Mpa to 8 Mpa; and elongation is from 20% to 900%; tensile modulus is from 2 Mpa to 130 Mpa. The reason that causes this phenomenon is due to the different hard segment content. The more the hard segment content, the lower the tensile strength and tensile modulus. In addition, the more the hard segment content, the higher the elongation.
It was also found that the thermal decomposition temperatures of the PUU films are ranging from 270oC to 290oC. The effect of chain extender content on thermal decomposition temperature (the differences are all within 10oC) is insignificant. However, the types of chain extender affect the thermal decomposition temperature significantly. Since different chain extenders will form the different types of structure of PUU.
目 錄
摘要…………………………………………………………….………Ⅰ
英文摘要……………………………………………………………..…Ⅴ
謝誌…………………………………………………………………..…Ⅶ
目錄……………………………………………………………………..Ⅷ
圖目錄…………………………………………………………….….ⅩⅠ
表目錄………………………………………………………………..ⅩⅥ
第一章 緒論……………………………………………………………1
1-1 前言…………………………………………………………….1
第二章 文獻回顧與理論基礎…………………………………….….… 6
2-1 PU理論介紹……………………………………………………6
2-1.1 PU簡介……………………………………………… 6
2-1.2 Isocyanate基礎反應……………………………….8 2-1.3 Isocyanate的衍生反應……………………………10 2-1.4 Isocyanate的催化反應……………………………13 2-1.5 PU的結構與性質…………………………………… 15
2-2 不同軟鏈段base 的PU合成與性質之文獻回顧………….18
2-2.1 含矽(Si) PU 的合成與性質討論…………………18
2-2.1.1 以PDMS為主鏈合成PU……….……….18
2-2.1.2含矽PU的相容性與相分離研究……….20
2-2.1.3其它型態含矽及具有異氰酸酯官能基
之高分子的合成與性質研究……..…….23
2-2.2 其它含矽高分子的研究與文獻回顧………………27
2-3 含矽PU表面導電度提昇的理論基礎………………………31
第三章 研究目的與內容………………………………………………35
3-1 研究目的…………………………………………………….35
3-2 研究內容…………………………………………………….35
第四章 實驗材料、設備及實驗方法………………………………….41
4-1 實驗藥品及設備…………………………………………...…41
4-1.1 實驗藥品………………………………………..….…41
4-1.2 實驗儀器………………………………………..…….43
4-2 實驗流程………………………………………………..…….45
4-3 實驗方法…………………………………………………..….47
4-3.1 PDMS 為base之Poly(urea-urethane)之製備……..47
4-3.2將Polyethylene glycol (PEG) 導入主鏈段之
PEG,PDMS base的 Poly(urea-urethane)合成方法.50
4-3.3 Poly(urea-urethane)的成膜方法………………..…50
4-3.4 Poly(urea-urethane)的各種性質檢測方法……..…51
第五章 初步結果與討論………………………………………………57
5-1 IR圖譜分析……………….……………………….….……..57
5-2 分子量測試……………………………………………….….70
5-3 Contact angle 分析………………………………………...74
5-4 薄膜材料表面元素分析…………………………………......80
5-5 薄膜材料表面型態學分析(SEM microphotograph)……….86
5-6 薄膜材料表面型態學分析 (AFM analysis)……………….95
5-7 薄膜材料表面水氣吸附分析……………………………....103
5-8 表面導電度分析……………………………………………109
5-9 TGA分析…………………………………………………….119
5-10 機械性質分析………………………………………………129
第六章 結論…………………………………………………………139
第七章 參考文獻……………………………………………………..143
圖目錄
圖一 靜電危害成過程及防治方法……………………………..4
Figure 2-1 Structure-Property relationships in polyurethanes………....7
Figure 2-2 The urethane link………………………………….………..7
Figure 2-3 Hard segment and soft segment of Polyurethane….……....16
Figure 2-4 Hard and soft segment phase………..…………………….17
Figure 2-5 Structure of AT-PCEMS…………..…...………………….21
Figure 2-6 The relationship of the surface resistance, contact angle
and aging time of PVC after treatment of fog chamber…...34
Figure 3-1. Relationship between water contact angle and siloxane
content. Air side: (○)SCL 4000, (□)SCL 2100, (△)SCL
770 ; Glass side: (●)SCL 4000, (■)SCL 2100,
(▲)SCL 770…………………………………………………37
Figure 3-2. ESCA spectra of air-side surfaces for PDMS-b-PMMA
/PMMA blend films. SCL 4000………...…………………38
Figure 3-3 經fog-chamber處理後之PVC的表面阻抗值、表面水
接觸角以及其aging time關係圖……………………….40
Figure 4-1 Flow Chart of investigating synthesis of PDMS based
Poly(urea-urethane) and the effect of hard segment
content and chain extender types on PDMS based
Poly(urea-urethane) properties..………...…………………45
Figure4-2 Flow Chart of investigating synthesis of PEG-PDMS
based Poly(urea-urethane) and the effect of PEG content
and molecular structure on PEG-PDMS based
Polyurethane properties….………………………………..46
Figure 4-3 啞鈴型試片大小及外觀…………………………..……...53
Figure 4-4 水接觸角圖示………….....………………………………53
Figure 5-1 Analysis of IR peaks on PDMS-DMPA system
Poly-(urea-urethane)………………………………………58
Figure 5-2 Reaction process of PDMS2500-DMPA system by
IR detection…..……………………………………………64
Figure 5-3 IR stack spectrum of PDMS2500-Ethylene
glycol systems….………………………………………….65
Figure 5-4 IR stack spectrum of PDMS4000-Ethylene
glycol systems..……………………………………………66
Figure 5-5 IR stack spectrum of PDMS2500-Glycerol systems……...67
Figure 5-6 IR stack spectrum of PDMS2500-DMPA systems………..68
Figure 5-7 IR stack spectrum of PEG-PDMS2500 based Poly-
(urea-urethane) systems……………………………………69
Figure 5-8 Molecular number of PDMS based Poly(urea-urethane)....71
Figure 5-9 PDI value of PDMS based Poly(urea-urethane)……….….71
Figure 5-10 The effect of the hard segment content and the
molecular weight of PDMS on Contact angle of Poly-
(urea-urethane)..……………………….…….……….……76
Figure 5-11 The effect of the hard segment content and the chain
extender types on Contact angle of Poly-(urea- urethane)...76
Figure 5-12 XPS spectra of air-contacting surface and
aluminum-contacting surface of PUU with DMPA as
chain extender……………………………………………...83
Figure 5-13 XPS spectra of air-contacting surface of PUU with DMPA
as chain extender at different hard segment content……….83
Figure 5-14 XPS spectra of aluminum-contacting surface of PUU with
DMPA as chain extender at different hard segment content...84
Figure 5-15 XPS spectra of aluminum-contacting surface of PUU with
Glycerol as chain extender at different hard segment content..84
Figure 5-16. XPS spectra of aluminum-contacting surface of PUU with
Ethylene glycol as chain extender at different hard
segment content.….…………………………………………85
Figure 5-17 Effect of the hard segment content on the N/Si normal
area ratio of PUU with different chain extender at air
and aluminum-contacting surface…….…………………….85
Figure 5-18 Air-contacting surface of PDMS based PUU with glycerol
as chain extender. The Chain extender/PDMS ratio (A) 1
(B) 3 (C) 5 (D) 7 (E) 9 (F) 14….…………………………...90
Figure 5-19 Aluminum-contacting surface of PDMS
based PUU with glycerol as chain extender. The
Chain extender/PDMS ratio (A) 1 (B) 3 (C) 5 (D) 7 (E) 9
(F) 14…………………………………………….………….91
Figure 5-20 Aluminum-contacting surface of PDMS based PUU
with DMPA as chain extender. The Chain extender/
PDMS ratio (A) 1 (B) 3 (C) 5 (D) 7 (E) 9 (F) 14.…………..92
Figure 5-21 Aluminum-contacting surface of PDMS based PUU
with ethylene glycol as chain extender. The Chain
extender/PDMS ratio (A) 1 (B) 3 (C) 5 (D) 7 (E) 9 (F) 14....93
Figure 5-22 The cluster of PDMS based PUU on the
aluminum- contacting surface. (A) Ethylene glycol
(B) Glycerol (C) DMPA…………………………………….94
Figure 5-23 AFM 3D photograph of PDMS based PUU with DMPA
as chain extender on the air-contacting surface……………..99
Figure 5-24 AFM 3D photograph of PDMS based PUU with
Ethylene glycol as chain extender on the aluminum-
contacting surface...…………………………………………99
Figure 5-25 AFM 3D photograph of PDMS based PUU with Glycol
as chain extender on the aluminum-contacting surface.…...100
Figure 5-26 AFM 3D photograph of PDMS based PUU with DMPA
as chain extender on the aluminum-contacting surface.…...100
Figure 5-27 AFM 2D photograph and data analysis of PDMS based
PUU with DMPA as chain extender on the air-contacting
surface……………………………………………………...101
Figure 5-28 AFM 2D photograph and data analysis of PDMS based
PUU with Ethylene glycol as chain extender on the
aluminum-contacting surface……………………………...101
Figure 5-29 AFM 2D photograph and data analysis of PDMS based
PUU with Glycerol as chain extender on the aluminum-
contacting surface…………………..……………………...102
Figure 5-30 AFM 2D photograph and data analysis of PDMS based
PUU with DMPA as chain extender on the aluminum-
contacting surface……..…………………………………...102
Figure 5-31 Water absorption of PDMS-4000 based Poly(urea-
urethane) with Ethylene glycol as chain extender………..106
Figure 5-32 Water absorption of PDMS-2500 based Poly(urea-
urethane) with Ethylene glycol as chain extender………..106
Figure 5-33 Water absorption of PDMS-2500 based Poly(urea-
urethane) with glycerol as chain extender……………..…107
Figure 5-34 Water absorption of PDMS-2500 based Poly(urea-
urethane) with DMPA as chain extender…………………107
Figure 5-35 Water absorption of PDMS-2500 based Poly(urea-
urethane) with ionized DMPA as chain extender……...…108
Figure 5-36 Surface resistance of PDMS based Poly(urea-urethane)
with various chain extenders and molecular weight of
PDMS after treated with 100% relative humidity(R.H.)
for 48 hours……………………………………………….112
Figure 5-37 Surface resistance of PDMS based Poly(urea-urethane)
with various chain extenders and molecular weight of
PDMS after treated with 85% relative humidity(R.H.)
for 48 hours…………………………………………..…...113
Figure 5-38 Surface resistance of PDMS based Poly(urea-urethane)
with various chain extenders and molecular weight of
PDMS after treated with 70% relative humidity(R.H.)
for 48 hours……………………………………………….114
Figure 5-39 Surface resistance of PDMS based Poly(urea-urethane)
with various chain extenders and molecular weight of
PDMS after dried on the vacuum oven at 80oC for 48
Hours……………………………………………………...115
Figure 5-40 Surface resistance of PEG-PDMS based Poly(urea-
urethane) with various PEG/PDMS molar ratios after
treated with 100% relative humidity(R.H.) for 48 hours…116
Figure 5-41 Effect of the contact angle on surface resistance of
Poly(urea-urethane) after treated with 100% relative
humidity (R.H.) for 48 hours……………………………..117
Figure 5-42 Effect of the relative humidity and hard segment content on surface resistance of Poly(urea-urethane)………………..118
Figure 5-43 TGA curve of PDMS4000-Ethylene glycol system……...125
Figure 5-44 TGA curve of PDMS2500-Ethylene glycol system……...125
Figure 5-45 TGA curve of PDMS2500-DMPA system……….………126
Figure 5-46 TGA curve of PDMS2500-Glycerol system…….…….….126
Figure 5-47 TGA curve of PEG-PDMS based Poly(urea-urethane)…...127
Figure 5-48 5 % weight loss temperature of PDMS based PUU………128
Figure 5-49 10 % weight loss temperature of PDMS based PUU……..128
Figure 5-50 Effect of hard segment content and molecular weight of
PDMS on tensile stress of PDMS based
Poly(urea-urethane) ……………………………………...133
Figure 5-51 Effect of hard segment content and chain extender on
tensile stress of PDMS based Poly(urea-urethane)……....133
Figure 5-52 Effect of hard segment content and molecular weight of
PDMS on tensile strain of PDMS based
poly(urea-urethane)………………………………………134
Figure 5-53 Effect of hard segment content and molecular weight of
PDMS on tensile strain of PDMS based
Poly(urea-urethane)………………………………………134
Figure 5-54 Effect of hard segment content and molecular weight of
PDMS on tensile modulus of PDMS based
Poly(urea-urethane)………………………………………135
Figure 5-55 Effect of hard segment content and molecular weight of
PDMS on tensile modulus of PDMS based
Poly(urea-urethane)……………………….……………...135
表目錄
表一 導電性高分子材料用途分類……………………….………2
Table 2-1 Relative reaction rates of catalyst OH/NCO reaction….…..15
Table 5-1 IR peaks on PDMS based Poly(urea-urethane)…….………58
Table 5-2 Mn、Mw and PDI value of PDMS2500-Ethylene glycol….73
Table 5-3 Mn、Mw and PDI value of PDMS40000-Ethylene glycol…73
Table 5-4 Mn、Mw and PDI value of PDMS2500-Glycerol………….73
Table 5-5 Mn、Mw and PDI value of PDMS2500-DMPA……………73
Table 5-6 Contact angle of PDMS based Poly(urea-urethane)………..75
Table 5-7 Contact angle of PEG-PDMS based Poly(urea-urethane)…..79
Table 5-8 Average roughness (Ra) value of PDMS based polyurea- urethane with different chain extender on the aluminum- contacting side and on the air contacting side……………..98
Table 5-9 Water absorption of PDMS-4000 based Poly(urea-urethane) with Ethylene glycol as chain extender….……………….104
Table 5-10 Water absorption of PDMS-2500 based Poly(urea-urethane) with Ethylene glycol as chain extender……….………….104
Table 5-11 Water absorption of PDMS-2500 based Poly(urea-urethane) with glycerol as chain extender..…………………………104
Table 5-12 Water absorption of PDMS-2500 based Poly(urea-urethane) with DMPA as chain extender……………………………105
Table 5-13 Water absorption of PDMS-2500 based Poly(urea-urethane) with ionized DMPA as chain extender………………...…105
Table 5-14 5% and 10% weight loss temperature of PDMS4000- Ethylene glycol………………….………………………..124
Table 5-15 5% and 10% weight loss temperature of PDMS2500- Ethylene glycol………………………..………………….124
Table 5-16 5% and 10% weight loss temperature of PDMS2500- Glycerol……………………………………………….….124
Table 5-17 5% and 10% weight loss temperature of PDMS2500- DMPA………………………………………………….…124
Table 5-18 5 % and 10 % weight loss temperature of PEG-PDMS
based PUU..………………………………………………124
Table 5-19 Tensile properties of PDMS based Poly(urea-urethane)
with different molecular weights of PDMS…..…………..136
Table 5-20 Tensile properties of PDMS based Poly(urea-urethane)
with various chain extender…...………………………….137
1. 沈永清 導電性塑膠材料技術發展介紹 化工資訊月刊 9,6(1998)
2. 財團法人工業研究院,導電姓高分子專題調查報告 (1998)
3. 王彙中、馬振基 導電性高分子複合材料 塑膠資訊 1998 8(No33)
4. J. H. Saunders and K. C. Frisch. Polyurethane; Chemistry and Technology, PartsⅠ and Ⅱ, Interscience, New York (1962)
5. P. Wright and A. P. C. Cumming, Solid Polyurethane Elastomers, Maclaren and Sons, London (1969).
6. C. Hepburn, Polyurethane elastomers, Applied Science Publishers LTD (1982).
7. L. G. Wade, Jr. Organic Chemistry , A Simon and Schuster Company Englewood Cliffs,New Jersy(1995)
8. Jerry March, ADVANCED ORGANIC CHEMISTRY, A Wiley-Interscience Publication. (1991)
9. Petersen, S., Ann. 562, 205 (1949).
10. H. Lakra, and F.B. Dains, The action of phenyl isocyanate on urethane, ureas and thioureas, J. Am. Chem. Soc.51, 2220(1929)
11. G.D. Buckley, H. A. Piggott, and J. E. Welch, J. Chem. Soc. 1945, 864
12. J. S. Blair, and G. E. P. Smith, Jr., The tautomerism of cyanourea with guanyl isocyanate, J. Am. Chem. Soc. 56,907(1934)
13. A. W. Hofmann, Ber. 3,761(1870).
14. J. W. Baker, M. M. Davies, and J. Gaunt, J. Chem. Soc.1949, 24
15. Dearlove Thomas J., Synthesis And Characterization Of Isocyanate-Terminated Polyurethane Prepolymers, Journal of Applied Polymer Science v 21 n 6 1499-1509 1977
16. J. E. Kresta, K. H. Hsieh, Co-catalytic effect of urethane groups in polycyclotrimerization reaction of isocyanates, Polymer Preprints v 20 n 1 488-491 1979
17. E. B. Richter, C.W. Macosko, Kinetics of fast (rim) urethane polymerization, Polymer Engineering and Science v 18 n 13 1012-1018 1978
18. F. Hostettler, and E. F. Cox, Organotin Compounds in Isocyanate Reactions, Ind. Eng. Chem. 52,609(1960)
19. H. W. Wolfe. Jr. Catalyst Activity in One-Shot Urethane Foam, Du Pont Foam Bulletin, Mar. 16 (1960)
20. Chapman, Toby Man, Studies on low surface energy polymer coatings. poly(amide urethanes) with siloxane side chains, Polymer Preprints v 37 n 2 735-736 1996
21. Wen-Yen Chiang and W.J. Shu, Prearation and Properties of UV-curable Poly(dimethylsiloxane) Urethane Acrylate .Ⅱ. Property-structure / Molecular Weight Relationships, J. Appl. Polymer. Sci. Vol 36,1889-1907(1988)
22. E. Nyilas, R. S.Jr. Ward, Development of blood-compatible elastomers em dash 5. Surface structure and blood compatibility of avcothane elastomers, Polymer Preprints v 16 n 2 p 681-686 1975
23. Benrashid, Synthesis of new siloxane urethane block copolymers and their properties, Journal of Polymer Science, Part A: Polymer Chemistry v 32 n 10 1847-1865 1994
24. F. Wang, Q. Ji, J. E. McGrath, Synthesis and Characterization of Poly(dimethylsiloxane) Modified Polyurethane
25. Ramanzan Benrashid, Synthesis of New Siloxane Urethane Block Copolymers and Their Properties, Journal of Polymer Science: Part A Polymer Chemistry, Vol.32, 1847-1865(1994).
26. C.Li,X.Yu, T. A. Speckhard, and S.L. Cooper, Synthesis and Properties of Polyxyanoethylsiloxane Polyurea Urethane Elastomers: A Study of Segmental Compatibility, Journal of Polymer Science: PartB: Polymer Physics, Vol.26,315-337 (1988).
27. Xin Chen and Joseph A. Gardella, Jr., Tai Ho, Kenneth J. Wynne, Surface composition of a series of Dimethylsiloxane-Urea-Urethane Segmented Copolymers Studied by Electron Spectroscopy for Chemical Analysis, Macromolecules 1995,28,1635-1642
28. Ho,T.; Wynne,K.J.; Nissan,R. Polydimethylsiloxane-Urea-Urethane Copolymers with 1,4-Benzenedimethanol as chain extender, Macromolecules 1993,26,7029
29. R. Benrashid, G. L. Nelson. Surface Characterization of Segmented Siloxane-Urethane Block Copolymers, Journal of Applied Polymer Science, Vol. 49, 523-537 (1993)
30. Hengzhong Zhuang and Joseph A. Gardella, Determination of the Distribution of Poly(dimethylsiloxane) Segment Lengths at the Surface of Poly[(dimethylsiloxane)-urethane] -Segmented Copolymers by Time-of-Flight Secondary Ion Mass Spectrometery, Macromolecules 1997,30,1153-1157
31. Kang-Wook Lee and Thomas J. McCarthy, Synthesis of a Polymer Surface Containing Covalently attached Triethoxysilane Functuonal: Adhesion to Glass, Macromolecules 1988,21,3353-3356.
32. Peiguang Zhou, Interpenetrating Polymer Networks of Poly(dimethyl siloxane-urethane) and Poly(methylmethacrylate), Journal of Polymer Science: Part A Polymer Chemistry, Vol.31,2481-2491(1993).
33. Horng-Ban Lin, R. W. Hergenerother, J.H.Silver, Jui-Chelin, F. Lim, Ex-vivo blood compatibility of silicone-containing biomaterials, Journal of Materials Science: Materials in Medicine, 5, 207(1994).
34. David G. Hewett, Lin Jing, The preparation and Characterization of Poly(urethane-PEO-polar siloxane) omplexes as polymer Electrolytes, Journal of polymer Science :Part A: polymer chemistry, 33, 2033(1995).
35. M. M. Gorelova, Surface Behavior of Dilute Blends of Poly(vinyl chloride) with Siloxane-Urethane-Ethyleneoxide Oligomers, Journal of Applied Polymer Science, Vol. 57 , 227-231 (1995)
36. Victor Bulacovschi, Thermal stability and the behavior in organic solvents of some poly(ester-siloxane)urethanes, Polymer Degradation and Stability 60 (1998)487-491
37. A. Stanciu, C. Ciobanu, Stoica Bull. I. P. I. 1995,Sectia II,XLI, 107
38. Bindu R. Nair, Marlon A. R. Osbourne, and Paula T. Hammond Synthesis and Characterization of New Segmented Copolymers with side Chain Liquid Crystalline Soft Segments, Macromolecules 1998,31,8749-8756.
39. Jae Hyung Park, Ki Dong Park, You Han Bae. PDMS-based polyurethanes with MPEG grafts: synthesis, characterization and platelet adhesion study, Biomaterials 20 (1999) 943-953
40. Victor Bulacovsohi, Aurelian Stoncin, Iulian Rusa, Adrian Cailean and Floriua Unguveanu, Thermal Stability and the behavior in organic solvent of some poly(ester-siloxane) urethanes, Polymer Degredation and Stability, 60, 487(1998)
41. Aurelian Stanciu, Victor Bulacovschi, Thermal stability and the tensile properties of some segmented poly(ester-siloxane)urethane, Polymer Degredation and Stability, 64, 259-265 (1999)
42. M.Furukawa, K.Wakiyama, Deterioration of novel polyesterurethane elastomers in outdoor exposure, Polymer Degradation and Stability, 65, 15(1999)
43. I. M. Raigorodskii, A PMR Study of the Structure of Siloxane-Urethane Copolymers and of some Correlations in Non-equilibrium, Heterogeneous Copolycondensation, Vysokomol. Soyed. A20: No.7, 1455-1490,1978
44. B.Boutevin. Synthesis and Applications of Photocrosslinkable Polydimethyl siloxanes- Part Ⅲ. Synthesis of Polysiloxanes with perfluorinated and Acrylated Urethane Linked Pendant groups, Eur. Polym. J. Vol 31. No. 11 1127-1133 1995.
45. Byung Kyu Kim, Sang Hyun Paik, L.Abedellah, B. Boutevin and B. Youssef, UV-curable Poly(ethylene glycol)-Based Polyurethane Acrylate Hydrogel, Journal of polymer Science :Part A: polymer chemistry, 37, 2703-2709 (1999)
46. Kacey Gribbin Marra,Toby.M.Chapman, and Janine M.Orbanm, Determination of Low Critical Surface Tensions of Noval Fluorinated Poly(amide urethane) Block Copolymers 3. Siloxane-Containing Side Chains, Macromolecules 1996,29,7553-7558
47. David G.Hewett, Lin Jing, The preparation and Characterization of Poly(urethane-PEO-polar siloxane) complexes as polymer Electrolytes, Journal of polymer Science :Part A: polymer chemistry, 33, 2033(1995)
48. Peiguang Zhou, H. L. Frisch, L. Rogovina, Interpenetrating Polymer Networks of Poly(dimethyl siloxane-Urethane) and Poly(methyl methacrylate), Journal of Polymer Science: Part A : Polymer Chemistry, Vol 31, 2481-2491
49. Matsukawa, K. Hasegawa, H. Inoue, A. Fukuda, and Y. Arita, Preparation and Curing behavior of Siloxane-Containing Epoxy Resins, J. of Polym. Sci. Part A, Polym. Chem., Vol. 30, 2045-2048 (1992).
50. Jr. Rogers, Epoxy-Substituteed Organosilicon Compounds and Method for Preparing-The same U. S. patent 2,883,395, Apr. 21 (1995).
51. James V. Crivello, Rhodium Containing Selective Catalysts for the Synthesis of Epoxysiloxane/Epoxysilicone Monomer and Polymers, U. S. patent 5,387,698, Feb. 7 (1995).
52. Shyue — Tzoo Lin and Steve K. Huang, Study of Curing Kinetics of Siloxane-Modified DGEBA Epoxy Resins, J. Appl. Polym. Sci., 62, 1641(1996)
53. Tsung — Han Ho, Jenn — Hwa Wang and Chun — Shan Wang, Modification of Epoxy Resins with Polysiloxane TPU for Electronic Encapsulation. Ⅱ. J. Appl. Polym. Sci., 60, 1097 (1996).
54. L. J. Baccei, B. Malofsky, Hydroxyl determination of prepolymer polyols, Polymer Preprints v 20 n 1 492-495 1979
55. Ming — Chun Lee, Tsung — Han Ho and Chun — Shan Wang, Synthesis of Tetrafunctional Epoxy Resins and Their Modification with Polydimethylsiloxane for Rlectronic Application, J. Appl. Polym. Sci., 62, 217 (1996)
56. Ji Qing, Kwon Ojin, Modification of epoxy resins by secondary amino terminated poly(dimethyl siloxane), Polymer Preprints v 38 n 1 107-108 1997
57. Po-Hou Sung, Chien-Yang Lin, Polysiloxane modified epoxy polymer network─ii. dynamic mechanical behavior of multicomponent graft-ipnS (epoxy /polysiloxane/polypropylene glycol), Eur. Polym. J., 33, 231 (1997).
58. Shyue-Tzoo Lin, Steve K. Huang, Thermal degradation study of siloxane-dgeba epoxy copolymers, Eur. Polym. J., 33, 365 (1997).
59. S. S. Lee, S. C. Kim, Eur. Polym. Morphology and Properties of Polydimethylsiloxane-Modified Epoxy Resin, J. Appl. Polym. Sci., 64, 941 (1997).
60. M. S., Li, C. C. M. Ma, J. C. Chen, M. L. Lin, and F. C. Chang, Epoxy-Polycarbonate Blends Catalyzed by a Tertiary Amine. 1. Mechanism of Transesterification an cyclization, Macromolecules., 29, 499., 1995.
61. M. L., Lin, K. H. C, F. C. Chang, M. S. Li., and C. C. M. Ma. The epoxy-polycarbonate blends cured with aliphatic amine I. Mechanism and kinetics, Journal of Polymer Science Part B 35 2169 1997.
62. W. C. Shih, C. C. M. Ma, J. C. Yang, and H. D. Chen, Polydimethylsiloxane containing Isocyanate Group Modified Epoxy Resin: Curing, Characterization and Properties, J. Appl. Poly. Sci. 74, 542, (2000).
63. J. M. Lin, C. C. M. Ma, F. Y. Wang, H. D. Wu and S. C. Kuang, Thermal, mechanical and morphology properties in phenolic resin/silica hybrid creamers, Journal of Polymer Science. part B: Polymer Physics. Vol. 36, 1699-1706, 2000.
64. C. C. M. Ma, F. Y. Wang, H. J. Lin, S. H. Wu and J. C. Yang. Mechanical properties, Thermal Stability and Flame Retardance of Novolac type phenolic resin blended with Poly-(dimethyl-siloxane-adiamide), Journal of Applied Polymer Science. Vol 79, 631-637, 2001.
65. Y. C. Du, F. Y. Wang and C. C. M. Ma, Thermeral degradation behaviors of Poly(dimethylsiloxane)-urethane-co-Poly(methyl methacrylate)s Based on Various Diisocyanates, Journal of Materials Science. (sumitted).
66. F. Y. Wang, Y. C. Du and C. C. M. Ma, Poly(dimethylsiloxane)urethane-co-Poly(methyl methacrylate)s Based on Various Diisocyanates 2,4-Toluene Diisocyanate and m-Xylene Diisocyanate. 2: Miscibility and Inter-association reaction of Copolymers, Journal of Polymer Science. Part B: Polymer Physics. (revised)
67. Chen Hong, Fan Quli, Chen Dongzhong, Synthesis and Properties of Polyurethane Modified with and Aminoethylaminopropyl- Substituted Polydimethylsiloxane. Ⅱ. Waterborne Polyurethanes, Journal of Applied Polymer Science. V79 295-301 (2001)
68. Silver James H, Lin Jui-Che, Surface Properties and Hemocopompatibility of Alkyl-siloxane Monolayers Supported onSilicone Rubber: Effect of Alkyl Chain length and ionic functionality, Biomaterials v20 n17 1533-1543 (1999)
69. Tang Liping, Sheu Min-Shyan, Anti-Inflammatory Properties of Triblock Siloxane Copolymer-Blended materials, Biomaterials v20 n15 1365-1370 (1999)
70. Gengenbach Thomas R., Griesser Hans J., Post-deposition aging reactions differ Markedly between Plasma Polymers deposited from siloxane and silazane monomers, Polymer v40 n18 5079-5094 (1999)
71. Mera Ann E., Goodwin Michael, Synthesis, Characterization and Surface analysis using Dynamic contact angle measurements of Graft copolymers: Poly(methyl metharylate)-G- Poly(Dimethylsiloxane) and Poly(methyl methacrylate)-G- Poly(trifluoropropylmethysiloxane), Polymer v40 n2 419-427 (1999)
72. H. Zhang, R. Hackam, Electrical Surface Resistance, Hydrophobicity and Diffusion Phenomena in PVC, IEEE Transactions on Dielectrics and Electrical Insulation Vol.6 No.1, February 1999
73. Shiyong Liu, Lu-Tao Weng, Chi-Ming Chan, Lin Li, Ka-Chun Ho and Ming Jiang, Surface characterization of poly(styrene-co-p- hexafluorohydroxy isopropyl-α- methyl styrene) copolymers by Tof-SIMS, XPS and contact angle measurements, SURFACE AND INTERFACE ANALYSIS 29,500-507 (2000)
74. Xin Chen, Joseph A. Garaella, Jr., A surface study of Poly(dimethylsiloxane) Nylon-6 diblock Copolymers by ESCA, Polymer preprints, 1992, 312-313
75. Xin Chen, Joseph A. Garaella, Jr., Surface Modification pf Polymers by Blending siloxane Block Copolymers, Macromolecules 1994, 27, 3363-3369
76. Elliot L. Chailof and Edward W. Merrill, ESCA Studies of Cross-Linked Poly(ethylene oxide)/ Polysiloxane Networks, Journal of Colloid and Interface Science, Vol. 137, No. 2, July 1990
77. Tai Ho, Kenneth J. Wynne, Polydimethylsiloxane-Urea-Urethane Copolymers with 1,4-Benzenedimethanol as chain extender, Macrolecules 1993, 26, 7029-7036
78. Quli Fan, Jianglin Fang, Qingmin Chen, Xuehai Yu, Synthesis and Properties of Polyurethane modified with aminoethylaminopropyl Poly(dimethylsiloxane), Journal of Applied Polymer Science, Vol. 74, 2552-2558 (1999)
79. Birdi, K. S. /Lewis, 2001, Scanning tunneling microscopy (STM) and atomic force microscopy (AFM): applications in surface and colloid chemistry
80. Stephen J. Clarson and J. Anthony Semlyen, Siloxane Polymers, PTR Prentice Hall, New Jersey, 1993.
81. Wen-Yen Chiang and Wey-Jye Shu, Prearation and Properties of UV-curable Poly(dimethylsiloxane) Urethane Acrylate .Ⅱ. Property-structure / Molecular Weight Relationships, Journal of Applied Polymer Science, Vol. 36, 1889-1907 (1988)
82. C. Li, X. Yu, Synthesis and properties of Polycyanoethylmethylsiloxane Polyurea Urethane Elastomers : A Study of Segmented Compatibility, Journal of Polymer Science : Part B: Polymer Physics, Vol. 26, 315-337 (1988)
83. Chen Hong, Fan Quli, Synthesis and Properties of Polyurethane Modified with an aminoethylaminopropyl-substituted Polydimethylsiloxane. Ⅱ. Waterborne Polyurethanes, Journal of Applied Polymer Science, V79 295-301 (2001)
84. Kang-Wook Lee and Thomas J. McCarthy, Synthesis of a Polymer Surface Containing Covalently attached Triethoxysilane Functuonal : Adhesion to Glass, Macromolecules, 1988, 21, 3353-3356
85. Terrence G. Vargo, Daniel J. Hook, Joseph A. Gardella, Jr., A Multitechnique Surface Analytical Study of a Segmented Block Copolymer Poly(ether-Urethane) Modified through an H2O Radio Frequency Glow Discharge, Journal of Polymer Science: Part A: Polymer Chemistry. Vol. 29,535-545, 1991
86. R. Benrashid, G. L. Nelson, Surface Characterization of Segmented Siloxane-Urethane Block Copolymers, Journal of Applied Polymer Science, Vol. 49, 523-537 (1993)
87. Kacey Gribbin Marra, Toby M. Chapman and M. Orban, Determination of Low Critical Surface Tensions of Noval Fluorinated Poly(amide urethane) Block Copolymers 3. Siloxane-Containing Side Chains, Macromolecules 1996, 29, 7553-7558
88. James H. Silver, Ken B. Lewis, Buddy D. Rathner, and Stuart L. Cooper, Surface and blood-contacting properties of alkylsilane monolayers supported on silicone rubber, Journal of Biomedicial Materials Reserch, Vol. 29,535-548 (1995)
89. Suzuki, H., Takeishi, M. Sythesis of Polysiloxane-Grafted Fluoropolymers and their Hydrophobic Properties, Journal of Applied polymer Science v78 1955-1963 (2000)
90. Beamson, G. /Briggs, D. /Wiley, High resolution XPS of organic polymers: the Scienta ESCA300 database, 1992
91. Crist, B. Vincent. /Wiley, Handbook of monochromatic XPS spectra, 2000
92. Hiroshi Inoue, Akihiro Matsumoto, Kimihiro Matsukawa, Surface Characteristics of Polydimethylsiloxane-Poly(methyl Methacrylate) Block Copolymers and Their PMMA Blends, Journal of Applied Polymer Science, Vol. 41, 1815-1829 (1990)
93. Quli Fan, Jianglin Fang, Qingmin Chen, Xuehai Yu, Synthesis and Properties of Polyurethane Modified with Aminoethylaminopropyl Poly(dimethyl siloxane), Journal of Applied Polymer Science, Vol. 74, 2552-2558 (1999)
94. Michael R. Brunstedt, Nicholas P. Ziats, Mark Schubert, Protein adsorption onto poly(ether urethane ureas) containing Methacrol 2138F: A surface-active amphilic additive, Journal of Biomedical Materials Research, Vol. 27, 255-267, (1993)
95. Inn-Kyu Kang, Dong Ki Baek, Young Moo Lee, Synthesis and Surface Characterization of Heparin-Immobilized Polyetherurethanes, Journal of Polymer Science: Part A: Polymer Chemistry. Vol. 36, 2331-2338 (1998)
96. James H. Silver, Ken B. Lewis, Buddy D. Rathner, and Stuart L. Cooper, Effect of polyol type on the surface structure of sulfonate-containing polyurethanes, Journal of Biomedicial Materials Reserch, Vol. 27,735-745 (1993)
97. Jin Zhao, Sergio R. Rojstaczer, Jiaxing Chen, Effect of siloxane segment Length on the Surface Composition of Poly(imidesiloxane) Copolymers and Its Rol in Adhesion, Macromolecules 1999, 32, 455-461
98. Elliot L. Chailof and Edward W. Merrill, ESCA studies of Cross-Linked Poly(ethylene Oxide)/ Polysiloxane Networks, Journal of Colloid and Interface Science, Vol. 137, No. 2, July 1990
99. Erika Johnston, Steve Bullock, Janelle Uilk, Networks from α,ω-Dihydroxypoly(dimethylsiloxane) and (Tridecafluro-1,1,2,2-tetrahydrooctyl)triethoxysilane: Surface Microstructures and Surface Characterization, Macromolecules 1999,32, 8173-8182
100. Hiroshi Inoue, Akihiro Matsumoto, Kimihiro Matsukawa, Surface Characteristics of Fluoroalkysilicone-Poly(methyl Methacrylate) Block Copolymers and Their PMMA Blends, Journal of Applied Polymer Science, Vol. 40, 1917-1938 (1990)
101. Shiyong Liu, Lu-Tao Weng, Chi-Ming Chan, Surface characterization of poly(styrene-co-p-hexafluorohydroxy isopropyl-α- methyl styrene) copolymers by Tof-SIMS, XPS and contact angle measurement, Surface and Interface Analysis, 29, 500-507, (2000)
102. J. H. Saunders and K. C. Frisch. Polyurethane; Chemistry and Technology, PartsⅠ and Ⅱ , Interscience, New York (1962)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top