跳到主要內容

臺灣博碩士論文加值系統

(18.204.56.185) 您好!臺灣時間:2022/08/17 15:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝欣如
論文名稱:利用微生物處理含BTX廢氣之效率研究
指導教授:黃世傑黃世傑引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:生物濾床生物降解
外文關鍵詞:biodegradationbiofilm
相關次數:
  • 被引用被引用:3
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
摘要
本研究的主要目的是利用微生物分解代謝的原理,探討生物濾床法處理含BTX廢氣之可行性。研究分別以BTX單一及混合為進流廢氣,經由變換BTX有機負荷量(包括變換廢氣停留時間及進流濃度),以探討生物濾床法處理含BTX廢氣之最佳操作條件,並比較單一基質廢氣及混合基質廢氣處理效率的差異。
實驗所使用的菌種來自新竹工研院化工所的活性污泥所篩選出的一株最具降解BTX能力的純菌,而菌的前培養條件為:苯、甲苯、二甲苯為單一生長基質下,其最適生長溫度分別為25℃、30℃、25℃,其最適降解溫度也為25℃、30℃、25℃,最適生長pH為8,最適氮源為polypepton;苯、甲苯、二甲苯為混合生長基質下,其最適降解比例為1:2:1、1:3:2,菌的最適降解溫度皆為30℃,最適降解溫度也皆為30℃。
本實驗的苯、甲苯、二甲苯單一基質操作條件為7種不同流量 (30.9∼466.8 ml/min ),滯留時間在1.2∼18.3 min,降解溫度在25℃、30℃、25℃,濃度範圍為0.1∼25 g/m3,氣體負載量為0.1∼900 g/m3-hr、0.1∼1200 g/m3-hr、0.1∼1200 g/m3-hr,去除效率分別為75∼100 ﹪、80∼100 ﹪、78∼100 ﹪;混合基質操作條件為4種不同流量大小(82.9∼312.9 ml/min ),滯留時間在1.8∼6.9 min,降解溫度在28℃、30℃、25℃,苯、甲苯、二甲苯濃度比例為1:1:1、1:2:1、1:3:2,濃度範圍為0.1∼10 g/m3,氣體負載量為0.1∼400 g/m3-hr、0.1∼400 g/m3-hr、0.1∼300 g/m3-hr,去除效率分別為50∼100 ﹪、80∼100 ﹪、72∼100 ﹪。
實驗中比較(1)苯、甲苯、二甲苯以活性碳貼附生長的單一與混合生長基質的降解情況;(2)菌以懸浮生長及活性碳貼附生長的降解情況。由結果得知菌以活性碳貼附生長較懸浮生長的降解情況佳,原因為活性碳具有對濃度變化的緩衝能力,同時菌的毒害性也較小。
Abstract
Aerobic biodegradation of benzene, toluene and xylene [BTX] in a biofilm system was investigated. The diameter and height of the biofilter were 4 cm and 75 cm, respectively. Granular active carbon particles were used as the packing material, and the packed bed height was 55 cm. Gases containing single compound or mixtures of BTX were treated in the biofilter by a specific microorganism. The concentrations of BTX were measured by a GC 14A with an FID as the detector, while that of CO2 was measured by a GC 8A with a TCD as the detector. Seven gas flow rates, 30.9、 82.2、 159.1、 236.0、 312.9、 389.9、 466.8 ml/min, were tested for single compound with inlet concentration ranging from 0.1~20 g/m3. Four gas flow rates, 82.2、 159.1、 236.0、 312.9 ml/min, were tested for mixtures with inlet concentration ranging from 0.1~10 g/m3. The results obtained in this study showed that both the removal efficiency and elimination capacity decreased for high gas flow rates. A decrease in the removal efficiency was noticed for high BTX inlet concentrations. The elimination capacity and CO2 production increased for high loading rates. Moreover, an increase in CO2 produced per units of filter media volume and time was noticed for high elimination capacity. Furthermore, the biofilter was proved to be highly efficient in the removal of single compound at a gas flow rate of 30.9 ml/min, corresponding to an empty bed retention time of 18.3 min, and of the mixtures at a gas flow rate of 82.2 ml/min, corresponding to an empty bed retention time of 6.9 min.
總目錄
頁次
總目錄 i
圖目錄 iv
表目錄 x
第一章 緒論 1
1-1 前言 1
1-2 VOCs處理技術 2
1-3 VOCs 生物處理法 5
第二章 文獻回顧 7
2-1 BTX簡介 7
2-2 BTX之性質 7
2-3 BTX降解及代謝反應機制 8
2-4 BTX 降解競爭抑制 12
2-5 微生物菌體固定化 15
2-5-1固定化程序簡介 15
2-5-2 貼附生長簡介 17
2-5-3 固定化生物反應器 18
第三章 實驗 20
3-1 實驗材料與設備 20
3-2 分析項目及方法 22
3-2-1污染物氣體濃度 22
3-2-2固定化程序步驟 24
3-2-3微生物菌相觀察 24
3-2-4生物膜厚度 25
3-3 實驗方法 25
3-3-1 比生長速率與基質濃度測量 25
3-3-2 微生物生長曲線測量 26
3-3-3 溫度對微生物生長之影響 26
3-3-4溫度對微生物降解之影響 26
3-3-5培養基pH對菌體生長之影響 27
3-3-6氮源的添加對菌體生長的影響 27
3-3-7微生物以苯、甲苯、二甲苯為單一生長基質的降解效率研究 27
3-3-8微生物以苯、甲苯、二甲苯為混合生長基質的降解效率研究 27
第四章 結果與討論 28
4-1微生物最佳生長條件探討 28
4-1-1微生物生長曲線 28
4-1-2微生物生長溫度 29
4-1-3 微生物降解溫度 30
4-1-4 pH對微生物生長的影響 31
4-1-5 氮源對微生物生長的影響 32
4-1-6 比生長速率與基質濃度 34
4-1-7 BTX單一基質降解速率與時間關係 35
4-1-8 BTX混合基質降解速率與時間關係 35
4-1-9微生物菌像觀察 36
4-1-10生物膜厚度量測 37
4-2 以苯、甲苯、二甲苯為單一生長基質降解效率之探討 38
4-2-1 氣體濃度變化對苯、甲苯、二甲苯去除效率之關係 38
4-2-2 氣體負載量對苯、甲苯、二甲苯去除能力之關係 40
4-2-3氣體負載量對苯、甲苯、二甲苯去除效率之關係 41
4-2-4 氣體滯留時間對苯、甲苯、二甲苯去除效率去除能力之關係 43
4-2-5二氧化碳生成量對苯、甲苯、二甲苯負載量之關係 44
4-3 以苯、甲苯、二甲苯為混合生長基質降解效率之探討 46
4-3-1 氣體濃度變化對苯、甲苯、二甲苯去除效率之關係 46
4-3-2 氣體負載量對苯、甲苯、二甲苯去除能力之關係 50
4-3-3氣體負載量對苯、甲苯、二甲苯去除效率之關係 53
4-3-4反應器更換濃度比例時,苯、甲苯、二甲苯定濃度隨時間降解之關係 57
4-3-5二氧化碳生成量對苯、甲苯、二甲苯負載量之關係 59
4-3-6 單位濾床二氧化碳生成量對苯、甲苯、二甲苯去除能力之關係 61
4-4苯、甲苯、二甲苯為單一與混合生長基質降解效率之比較 63
4-4-1 氣體濃度變化對苯、甲苯、二甲苯去除效率之關係 63
4-4-2 氣體負載量對苯、甲苯、二甲苯去除能力之關係 67
4-4-3 懸浮生長與活性碳貼附生長濃度與去除效率之比較 70
4-4-4懸浮生長與活性碳貼附生長氣體負載量與去除能力之比較 71
4-5以苯甲苯二甲苯基質降解與文獻之比較 74
4-5-1混合生長基質降解 74
4-5-2單位濾床二氧化碳生成量 75
4-5-3 SEM菌相圖 78
第五章 結論 79
參考文獻 81-85
參考文獻
Abumaizar R. J., Kocher W., and Smith E. H., 1998, Biofiltration of BTEX contaminated air streams using compost-activated carbon filter media, J. Hazardous Materials.,60: 111-126.
Alvarez P. J. J., and Vogel T. M., 1995, Degradation of BTEX and their aerobic metabolites by indigenous microorganisms under nitrate reducing conditions, Wat. Res., 31:15-28.
Arcangeli J. P., and Arvin E., 1992, Toluene biodegradation and biofilm growth in an aerobic fixed-film reactor, Appl. Microbiol. Biotechnol., 37: 510-517.
Arcangeli J. P., and Arvin E., 1995, Biodegradation rates of aromatic contaminants in biofilm reators, Wat. Sci. Tech., 31: 117-128.
Arcangeli J. P., and Vogel T. M., 1991, Substrate interactions of benzene,toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries, Appl. Environ. Microbiol., 57:2981-2985.
Bieleffldt A. R. and Stensel H. D., 1998, Modeling competitive inhibition effects during biodegradation of BTEX mixtures, Wat.Res., 33: 707-714.
Bieleffldt A. R. and Stensel H. D., 1999, Evaluation of biodegradation kinetic testing methods and longterm variability in biokinetics for BTEX metabolism, Wat.Res., 33: 733-740.
Chang M. K., Voice T. C., and Criddle C. S., 1993, Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene and p-xylene by two Pseudomonas isolates, Biotechnology and Bioengineering., 41:1057-1065.
Cohen Y., 2001, Biofiltration — the treatment of fluids by microorganisms immobilized into the filter bedding material: a review, Bioresource Techology., 77: 257-274.
Corsi R. L. and Seed L., 1995, Biofiltration of BTEX : media, substrate, and loading effects, Environ. Progress., 14:151-158.
Corseuil H. X., Hunt C. S., and Alvarez P. J. J., 1998, The influence of the gasoline oxygenate ethanol on aerobic and anaerobic BTX biodegradation, Wat. Res., 32:2065-2072.
du Plessis C. A., Strauss J. M., and Riedel K.-H. J., 2001,BTEX catabolism interactions in a toluene-acclimatized biofilter, Appl. Microbiol. Biotechnol.,55:122-128.
Jorio H., Bibeau L., Viel G., and Heitz M., 2000, Effects of gas flow rate and inlet concentration on xylene vapors biofiltration performance, J. Chemical Engineering., 76: 209-221.
Khan F. I. and Ghoshal A. Kr., 2000, Removal of Volatile Organic Compounds from polluted air, J. Loss Prevention in the Process Industries., 13: 527-545.
Kelly W. R., Hornberger G. M., Herman J. S., and Mills A.L., 1996, Kinetics of BTX biodegradation and mineralization in batch and column systems, J. Contaminant Hydrology., 23: 113-132.
Kelly W. R., Herman J. S., and Mills A. L., 1996,The geochemical
effects of benzene, toluene, and xylene (BTX) biodegradation,
Applied Geochemistry, 12: 291-303.
Lee J. Y., Jung K. H., and Kim H. S., 1995, Amplification of toluene dioxygenase genes in a hybird Pseudomonas strain to enhance the biodegradation of benzene, toluene, and p-xylene mixture, Biotechnology and Bioengineering., 45: 488-494.
Lee S. K. and Lee S. B.,2001, Isolation and characterization of a
thermotolerant bacterium Ralstonia sp. strain PHS1 that degrades
benzene, toluene, ethylbenzene, and o-xylene, App.l Microbiol.
Biotechnol., 56:270-275
Luong J. H. T., 1987, Generalization of Monod kinetics for analysis of growth data with substrate inhibition, Biotechnology and Bioengineering., 29:242-248.
Mallakin A. and Ward OP., 1996, Degradation of BTEX compounds in liquid media and in peat biofilters, J. Industrial Microbiology., 16:309-318.
Marek J., Paca J., Koutsky B., and Gerrard A. M., 1999, Determination of local elimination capacities and moisture contents in different biofilters treating toluene and xylene, Biodegradation., 10:307-313.
Marrie T. J. and Costerton J. W., 1981, Prolonged survial of Serratia marcescens in chlorhexidine, Appl. Environ. Microbiol., 42:1093-1097.
Mohseni M. and Allen D. G. 2000, Biofiltration of mixtures of hydrophilic and hydrophobic volatile organic compounds, Chemical Engineering Science., 55: 1545-1558.
Mason C. A., Ward G., Abu-Salah K., Keren O., and Dosoretz C. G., 2000, Biodegradation of BTEX by bateria on powdered activated carbon, Bioprocess Engineering., 23: 331-336.
Oh Y. S., Shareefdeen Z., Baltzis B. C., and Bartha R., 1994, Interaction between benzene, toluene , and p-xylene (BTX) during their biodegradation, Biotechnology and Bioengineering., 44:533-538.
Ralebitso T. K., Roling W. F. M., Braster M., Senior E., and van Vereseveld H. W., 2000, 16S rDNA-based characterization of BTX-catabolizing microbial associaeions isolated from a south African sandy soil, Biodegradation., 11:351-357.
Shim H. and Yang S.-T., 1999, Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by a coculture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a fibrous-bed bioreactor, J. Biotechnology., 67: 99-112.
Shimomura T. S., Uchiyama H., and Yagi O., 1997, Biodegradation of trichloroethylene by Methylocystis SP. Strain M immobilized in gel beads in a fluidized — bed bioreactor, Wat. Res., 31:2383-2386.
Sorial G. A., Smith F. L., Suidan M. T., Biswas P., and Brenner R. C., 1997, Performance of peat biofilter: impact of the empty bed residance time, temperature and toluene loading, J. Hazardous Materials., 53: 19-33.
Syu, M. J. and Wang Y. W., 1999, Immobilization materials mixed with activated sludge as column biofilters for the treatment of gaseous containing benzene and tolune, Bioprocess Engineering., 21: 230-244.
Thalasso F., Razo-Flires E., Ancia R., Naveau H. P., and Nyns E.- J., 2001, Pressure-drops control strategy in a fixed-bed reactor, J. Hazardous Materials., 81:115-122.
Yeh, W. K., Gibson, D. T., and Liu, T. N., 1997, Toluene dioxygenase: a multicomponent enzyme system, Biochem. Biophys. Res. Comm., 78: 401-410.
Yerushalmi L., Manuel M. F., and Guiot S. R., 1999, Biodagradation of gasoline and BTEX in a microaerophilic biobarrier, Biodegradation., 10:341-352.
Zhu L., Abumaizar R. J., and Kocher W. M., 1998, Biofiltration of benzene contaminated air streams using compost-activated carbon filter media, Environmental Process., 17: 168-172.
Zylstra, G. J. and Gibson, D. J., 1989, Toluene degradation by Pseudomonas putida F1: nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli., J. Biol. Chem., 264: 14940-14946.
唐修穆,1995,應用生物濾床處理含揮發性有機化合物(VOCs)廢氣之研究,國立清華大學化學工程研究所博士論文。
陸德源,2000,利用甲苯分解菌處理含三氯乙烯廢氣效率之研究,國立清華大學化學工程研究所碩士論文。
顏嘉玟,2001,利用微生物處理三氯乙烯廢氣效率之研究,國立清華大學化學工程研究所碩士論文。
朱文昌,1996,生物濾床法處理含BTEX廢氣程序控制之研究,國立中興大學環境工程研究所碩士論文。
朱振華,1998,生物濾床法處理含BTEX廢氣程序控制之研究,國立中興大學環境工程研究所碩士論文。
行政院環境保護署89年度電子業、油漆製造、製藥、光碟及液晶顯示器製造業有機廢氣之本土化最佳性控制技術建立計畫,1999,工業技術研究院化學工業研究所。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top