跳到主要內容

臺灣博碩士論文加值系統

(3.235.140.84) 您好!臺灣時間:2022/08/15 03:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范和安
研究生(外文):He-An Fan
論文名稱:利用壓縮流體反溶劑CO2分離光導性高分子COC與甲苯溶劑
指導教授:談駿嵩談駿嵩引用關係
指導教授(外文):Chung-Sung Tan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:59
中文關鍵詞:COCCO2反溶劑沉殿
外文關鍵詞:cycloolefin copolymerCO2antisolventprecipitationmorphology
相關次數:
  • 被引用被引用:1
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文研究的目的在利用CO2為反溶劑由甲苯溶液中分離出共聚高分子COC(Cycloolefin Copolymer),以改善由傳統反溶劑分離所產生的溶劑殘留、顆粒膠結均勻度不佳等問題。實驗方式是將高分子溶液經由0.4 mm孔徑大小的噴嘴噴灑進充滿反溶劑CO2的沈澱槽中,由於噴嘴可將溶液霧化成微小液滴,以及壓縮流體快速的質傳效果,可在瞬間提供很大的過飽和度,使得高分子大量沈積,在經由CO2連續清洗沈澱槽內的高分子結晶,以降低其溶劑殘留,達到乾燥的目的。實驗操作變數包括溫度、壓力、溶液濃度、CO2流速、溶液流速及液面高度等,結果發現均能夠得到95%以上的產率。就COC沈澱結構(Morphology)來看,氣液平衡且液面高度為沈澱槽1/2以下的操作均可得小於1µm的圓球體。就濃度來看,6wt%以下的濃度時其沈積機制為成核及成長機制(Nucleation and Growth),因此形成粉末的巨觀和圓球體的微觀結構;7wt%以上的濃度下則是以自發相分離的機制(Spinodal Decomposition)沈積,因而形成團狀物的巨觀和多孔纖維的微觀結構。CO2流速對COC的結構影響不大,顯示主要控制粒徑大小的是韋伯數,而增加溶液流速的操作條件下能使高分子溶液更加能夠霧化而形成更小的微粒。析出後的COC經分析發現玻璃轉化溫度 (Glass Transition Temperature, Tg)及分子量均與原始的COC顆粒相差不大,表示可以CO2為反溶劑分離COC與甲苯。

編號 內容 頁數
壹 前言 1
貳 文獻回顧 4
參 實驗部分 18
3-1 主要實驗設備 18
3-2 實驗藥品 20
3-3 實驗步驟 20
3-4 分析儀器 22
肆 實驗結果與討論 23
4-1 壓力與溫度的影響 23
4-2 COC溶液濃度的影響 39
4-3 CO2流速和COC溶液流速的影響 43
4-4 液相CO2液面高度的影響 49
4-5 COC析出物之性質分析 49
伍 結論 53
陸 參考文獻 55

[1] Brekner, M.-J.; Deckers, H.; Osan, F. “Cycloolefin Copolymers Having Low Melt Viscosity and Low Optical Attenuation” US Patent 5,637,400, 1997.
[2] 何耀宗 “光纖材料的現況與未來”, 化工資訊, 14, 9, 59, 2000.
[3] 施希弦 “透明高分子材料與其光學應用趨勢”, 化工資訊, 14, 11, 7, 2000.
[4] 張光偉; 蘇忠傑 “平面光波導材料與製程”, 化工資訊, 14, 11, 27, 2000.
[5] 施希弦 “高分子光波導之耦合器介紹”, 化工資訊, 15, 5, 28, 2001.
[6] 丁晴;陸希弦 “mCOC之現況及未來展望”, 化工資訊, 14, 7 , 59, 2000.
[7] 張文聖 “mCOC製程概述”, 觸媒與製程, 7, 3, 37, 1999.
[8] Weller, T.; Brekner, M.-J.; Osan, F. “Process for Preparation and Purification of Material of a Cycloolefin Copolymer”, US Patent 5,498,677, 1996.
[9] Aubert, J. H. and R. L. Clough, “Low-density, Microcellular Polystyrene Foams”, Polymer, 26, 2047 (1985)
[10] Krukonis, V. J.,”Supercritical Fluid Nucleation of Difficult-to-Comminute Materials”, AIChE Meeting, San Francisco, paper 140f., Nov., 1984
[11] Larson, K. A., and M. L.King., “Evaluation of Supercritical Fluid Extraction in the Pharmaceutical Industrial”, Biotech. Prog., 2(2), 73, (1986)
[12] Matson, D. W., J. L. Fulton, R. C. Petersen, and R. D. Smith, “Rapid Expansion of Supercritical Fluid Solutions: Solute Formation of Powders, Thin Films, and Fibers”, Ind. Eng. Chem. Res., 26, 2298 (1987)
[13] Tom, J. W.; Debenedetti, P. G.” Precipitation of poly(L-lactic acid) and composite poly(L-lactic acid)-Pyrene particles by rapid expansion of supercritical solutions”, J. Supercritical Fluids, 7, 9, 1994.
[14] Kim, J. H.; Paxton, T. E.; Tomasko, D. L.” Microencapsulation of naproxen using rapid expansion of supercritical solution”, Biotchnol. Pro., 12, 650, 1996.
[15] McHugh, M. A.; Guckes, T. L. “Separating Polymer Solutions with Supercritical Fluids”, Macromolecules, 18, 674, 1985.
[16] Seckner, A. J.; McClellan, A. K.; McHugh, M. A. “High Pressure Solution Behavior of the Polystyrene-Toluene-Ethane system”, AIChE J., 34, 1, 9, 1988.
[17] Ng, H. J. and D. B. Robinson, “Equilibrium Phase Property of the Toluene-Carbon Dioxide System”, J. Chem. Eng. Data, 23, 325 (1978)
[18] Gallagher, P. M.; Coffey, M. P.; Krukonis, V. J.; Klasutis, N. In: Supercritical Fluid Science and Technology; Johnston, K. P.; Penninger, J. M. L., Eds; American Chemical Society: Washington DC, vol. 406, 1989; pp 334-354.
[19] Gallagher, P. M.; Coffey, M. P.; Krukonis, V. J. “Gas Anti-Solvent Recrystallization of RDX: Formation of Ultra-Fine Particles of a Difficult-to-Comminute Explosive”, J. Supercritical Fluids, 5, 130, 1992.
[20] Yeo, S. .D.; Lim, G. B.; Debenedetti, P. G.; Bernstein, H. “Formation of Microparticulate Protein Powders Using a Supercritical Fluid Antisolvent”, Biotechnol. Bioeng., 41, 341, 1993.
[21] Chang, C. J.; Randolph, A. D.; Craft, N. E. “Separation of β-Carotene Mixtures Precipitated from Liquid Solvents with High-Pressure CO2”, Biotechnol. Prog., 7, 275, 1991.
[22] Chang, C. J.; Liou, Y.; Lan, W.-J. “Relative Ratio and Separation Factor in Crystallization with High Pressure CO2”, Can. J. Chem. Eng., 72, 56, 1994.
[23] Chang, C. J.; Randolph, A. D. “Solvent Expansion and Solute Solubility Prediction in Gas-Expanded Liquids”, AIChE J., 36, 6, 939, 1990.
[24] Dixon, D. J.; Johnston, K. P. “Molecular Thermodynamics of Solubilities in Gas Antisolvent Crystallization”, AIChE J., 37, 1441, 1991.
[25] Tai, C. Y.; Cheng, C.-S. “Effect of CO2 on Expansion and Supersaturation of Saturated Solutions”, AIChE J., 44, 4, 1998.
[26] Tai, C. Y.; Cheng, C.-S. “Supersaturation and Crystal Growth in Gas Anti-Solvent Crystallization”, J. Crystal Growth, 183, 622, 1998.
[27] Dixon, D. J.; Johnston, K. P.; Bodmeier, R. A. “Polymeric Materials Formed by Precipitation with a Compressed Fliud Antisolvent”, AIChE J., 39, 127, 1993.
[28] Dixon, D. J.; Johnston, K. P. “Formation of Microporous Polymer Fibers and Oriented Fibrils by Precipitation with a Compressed Fluid Antisolvent”, J. Appl. Polym. Sci., 50, 1929, 1993.
[29] Dixon, D. J.; Luna-Bárcenas, G.; Johnston, K. P. “Microcellular Microspheres and Microballoons by Precipitation with a Vapor-Liquid Compressed Fluid Antisolvent”, Polymer, 35, 18, 3998, 1994.
[30] Randolph, T. W.; Randolph, A. D.; Mebes, M.; Yeung, S. “Sub-Micrometer-Sized Particles of Poly(L-lactic acid) via the Gas Antisolvent Spray Precipitation Process”, Biotechnol. Prog., 9, 429, 1993.
[31] Yeo, S.-D.; Debenedetti, P. G.; Radosz, M.; Schmidt, H.-W. “Supercritical Antisolvent Process for Substituted Polyamides: Phase Equilibrium and Morphology Study”, Macromolecules, 26, 6207, 1993.
[32] Schmitt, W. J., M. C. Salada, G. G. Shook, and S. M. SpeakerⅢ, “Finely- Divided Powders by Carrier Solution Injection into a Near or Supercritical Fluid”, AIChE J., 41, 2476, (1995)
[33] Mawson, S.; Kanakia, S.; Johnston, K. P. “Coaxial Nozzle for Control of Particle Morphology in Precipitation with a Compressed Fluid Antisolvent”, J. Appl. Poly. Sci., 64, 2105, 1997.
[34] Mawson, S.; Johnston, K. P.; Betts, D. E.; McClain J. B.; DeSimone, J. M. “Stabilized Polymer Microparticles by Precipitation with a Compressed Fluid Antisolvent. 1. Poly(fluoro acrylates)”, Macromolecules, 30, 71, 1997.
[35] Bleich, J.; Müller, B. W.; Waβmus, W. “Aerosol Solvent Extraction System- a new Microparticle Production Technique”, Int. J. Pharm., 97, 111, 1993.
[36] Falk, R.; Randolph, T. W.; Meyer, J. D.; Kelly, R. M.; Manning, M. C. “Controlled Release of Ionic Compounds from Poly(L-lactide) Microspheres Produced by Precipitation with a Compressed Antisolvent”, J. Controlled Rel., 44, 77, 1997.
[37] Taki, S.; Badens, E.; Charbit, G. “Controlled Release System Formed by Supercritical Anti-Solvent Coprecipitation of a Herbicide and a Biodegradable Polymer”, Journal of Supercritical Fluids, 21, 61, 2001
[38] Tan, C.-S.; Chang, W.-W. “Precipitation of Polystyrene from Toluene with HFC-134a by the GAS Process”, Ind. Eng. Chem. Res., 37, 1821, 1998.
[39] Tan, C.-S.; Lin, H.-Y. “Precipitation of Polystyrene by Spraying Polystyrene-Toluene Solution into Compressed HFC-134a”, Ind. Eng. Chem. Res., 38, 3898, 1999.
[40] Tan, C.-S.; Hsu, R.-Y.; Chen, J-.M “Formation of micro-sized cycloolefin copolymer from toluene solution using compressed HFC-134a as antisolvent”, J. Appl. Polym. Sci., 84, 1657, 2002.
[41] Krause, B.; Mettinkhof, R.; van der Vget N. F. A.; Wessling, M.; “Microcellular Foaming of Amorphous High-Tg Polymers Using Carbon Dioxide”, Macromolecules, 34, 874, 2001

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top