跳到主要內容

臺灣博碩士論文加值系統

(3.229.124.74) 您好!臺灣時間:2022/08/11 07:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:連浩銓
論文名稱:利用沸石薄膜再生超臨界二氧化碳
論文名稱(外文):(Regeneration of supercritical carbon dioxide by zeolite menbrane)
指導教授:談駿嵩談駿嵩引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:沸石薄膜超臨界二氧化碳咖啡因排除率
相關次數:
  • 被引用被引用:1
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在現今這個高度工業化的社會,能源的利用一直是受到關注的重要課題,同時在製程中對於環境的保護也是非常重要的,而超臨界流體就是一種新興用來取代有機溶劑的清潔製程。在使用超臨界流體萃取後,如果將溶質及流體分離,進而回收流體加以再生利用,便可以達到降低成本以及節省能源的效用。本研究擬利用沸石薄膜管以回收超臨界流體,所模擬的系統為超臨界二氧化碳及咖啡因(溶質)。
本研究是以市售薄膜管做為基材,其內部分離層孔徑分別為5 nm及200 nm,因此在5 nm薄膜管內層塗佈上一層及兩層孔徑約0.5 nm之microporous材質(silicalite),以及在200 nm薄膜管上先塗佈2.5 nm 之mesoporous材質(silica)再塗佈0.5 nm之microporous材質,以此三種薄膜進行分離。實驗結果顯示在13.79 MPa以及35℃下,咖啡因在操作時間八小時內的排除率皆可達到0.99以上,但當壓力逐漸提高到19 MPa時,排除率會有下降的趨勢。這是由於沸石薄膜層會有少許缺陷,因此薄膜層中的吸附會對排除率造成影響,此也可推測分子篩效應及薄膜層上之缺陷導致進入薄膜層之咖啡因被吸附同為分離之機制。改變溫度對此三種薄膜的排除率並不會造成明顯的影響。此外將薄膜分離改變為徑向操作以探討分離所用之主要機制,當通過薄膜的流量較大時,咖啡因會來不及被吸附,使得排除率會降低至0.9,而調整permeate端流量使其與之前軸向操作的相近時,排除率只會稍微下降至0.97,因此判斷薄膜吸附咖啡因才是薄膜分離所使用之主要機制。
目 錄 頁次
摘要 Ⅰ
目錄 Ⅱ
圖目錄 Ⅲ
表目錄 Ⅴ
第一章 緒論 1
1-1 前言 1
1-2 再生超臨界流體 1
1-3 薄膜分離的原理與機制 5
1-4 利用薄膜分離以再生超臨界二氧化碳之相關文獻 6
1-5 薄膜的選擇
1-6 陶瓷膜及其改質之相關文獻 7
8
第二章 實驗方法 22
第三章 實驗結果與討論 30
3-1 薄膜在固定壓力及溫度下之實驗結果 31
3-1.1 比較GU、GM1、GM2及GM3的排除率及滲透流量 31
3-1.2 比較FU、FM1及FM3的排除率及滲透流量 32
3-2 薄膜在固定溫度下改變操作壓力之實驗結果 33
3-2.1 GM1及GM2在不同操作壓力下之結果 34
3-3 薄膜在固定壓力下改變操作溫度之實驗結果 35
3-3-1 GM1、GM2及FM1在不同操作溫度下之結果 35
3-4 薄膜在55℃下改變操作壓力之實驗結果 35
3-5 薄膜徑向操作之實驗結果 36
3-6 薄膜再使用性實驗
3-7 薄膜之再生實驗結果 37
37
第四章 結論 65
參考文獻 67
參考文獻
[1] M. McHugh, and V. Krukonis, Supercritical Fluid Extraction — Principles and Practice, 2nd ed., Butterworth — Heinemann, Boston, 1994.
[2] R. P. de Fillipi, and J. E. Vivian, U.S. Patent, 4,349,415, 1985.
[3] M. J. O’Brian, J. E. Spence, R. H. Skiff, G. J. Vogel, and R. Prasad, “Caffeine Recovery from Supercritical Carbon Dioxide.” U.S. Patent 4,996,317, 1991.
[4] M. Gehrig, German Patent, DE3443390 A1, 1984.
[5] S. J. Sarrade, L. Schrive, G. M. Rios, and M. Carles, “Supercritical CO2 Extraction Coupled with Nanofiltration Separation. Application to Fractionation.” The 4th International Symposium on Supercritical Fluid, Sendai, Japan, 625, 1997.
[6] S. J. Sarrade, G. M. Rios, and M. Carles, “Nanofiltration Membrane Behavior in a Supercritical Medium.” J. Memb. Sci., 114, 81, 1996.
[7] S. J. Sarrade, G. M. Rios, C. Perre, and M. Carles, “Performance of Supercritical Carbon Dioxide Extraction Coupled with Nanofiltration.” The 3th International Symposium on Supercritical Fluid, Strasbourg, France, 2, 71, 1994.
[8] S. J. Sarrade, G. M. Rios, and M. Carles, “Supercritical CO2 Extraction Coupled With Nanofiltration Separation Application to Natural Products. ” Separation and Purification Technology, 14, 19, 1998.
[9] T. Fujii, Y. Tokunaga, and K. Nakamura, “Effect of Solute Adsorption Properties on its Separation from Supercritical Carbon Dioxide with a Thin Porous Silica Membrane.” Biosci. Biotech. Biochem., 60, 12, 1996.
[10] T. Fujii, Y. Tokunaga, and K. Nakamura, “Separation of Caffeine from Supercritical Carbon Dioxide with a Zeolite Membrane.” Biosci. Biotech. Biochem., 61, 1024, 1997.
[11] S. I. Semenova, H. Ohya, T. Higashijima, H. Tokunaga, and Y. Negishi, “Separation of Supercritical CO2 and Ethanol Mixtures with an Asymmetric Polyimide Membrane.” J. Memb. Sci., 74, 131, 1992.
[12] H. Ohya, T. Higashijima, Y. Tsuchiya, H. Tokunaga, and Y. Negishi, “Separation of Supercritical CO2 and iso-Octane Mixtures with an Asymmetric Polyimide Membrane.” J. Memb. Sci., 84, 185, 1993.
[13] J.-H. Hsu, and C.-S. Tan, “Separation of Ethanol from Aqueous Solution by a Method Incorporating Supercritical CO2 with Reverse Osmosis.” J. Memb. Sci., 81, 273, 1993.
[14] S. Takegami, and H. Yamada, “Separation of Ethanol-Water by Combination Process with Supercritical Fluid Extraction and Membrane Separation.” Membrane, 18, 173, 1993.
[15] M. Sims, W. E. McGovern, and J. R. Robinson, “Porocritical Fluid Extraction Application: Continuous Pilot Extraction of Natural Products from Liquids with Near-Critical Fluids.” Proceedions of the 5th Meeting on Supercritical Fluids, Nice, France, 729, 1998.
[16] A. Birtigh, K. Liu, M. Johannsen, and G. Brunner, “Regeneration Methods for Caffeine-Loaded CO2.” Separation Science and Technology, 30, 3265, 1995.
[17] A. Birtigh, and G. Brunner, “Regeneration of Loaded Supercritical
Fluids.” J.Supercrit. Fluid, 9, 227, 1996.
[18] Z. A. E. P. Vroon, K. Keizer, M. J. Gilde, H. Verweij, and A. J. Burggraaf, “Transport Properties of Alkanes Through Ceramic Thin Zeolite MFI Membranes.” J. Memb. Sci., 113, 293, 1996.
[19] K. Kusakabe, A. Murata, T. Kuroda, and S. Morooka, “Preparation of MFI-type Zeolite Membranes and Their Use in Separation n-Butane and i-Butane.” J. Chem. Eng. Jpn., 30, 72, 1997.
[20] K. Kusakabe, T. Kuroda, and S. Morooka, “ Separation of Carbon Dioxide from Nitrogen Using Ion-Exchanged Faujasite-Type Zeolite Membranes Formed on Porous Support Tubes.” J. Memb. Sci., 148, 13, 1998.
[21] H. Funke, H. John, L. Falconer, R. D. Noble, Q. Lin, “Organics/Water Separation by Pervaporation with a zeolite.” J. Memb. Sci., 117, 163, 1996.
[22] C. R. Martin, P. Aranda, and W. J. Chen, “Pervaporation Separation of Ethanol/Water Mixtures by Polystyrenesulfonate/Alumina Composite Membranes.” J. Memb. Sci., 107, 199, 1995.
[23] 邱郁雯, “利用薄膜分離技術再生超臨界流體,” 碩士論文, 國立清華大學化學工程研究所, 2000.
[24] 林馨如, “以改質薄膜分離超臨界二氧化碳及咖啡因,” 碩士論文, 國立清華大學化學工程研究所, 2001.
[25] M. F. Carolan, and J. N. Michaels, “Chemical Vapor-Deposition of Yttria Stabilized Zirconia in Porous-Media,” Solid State Ionics, 25, 207, 1987.
[26] G. R. Gavalas, C. E. Megiris, and S. W. Nam, “Deposition of H2-Permselective Silica Films,” Chem. Eng. Sci., 44, 9, 1829, 1989.
[27] C. E. Megiris, and J.H.E. Glezer, “Synthesis of H2-Permselective Membranes by Modified Chemical Vapor Deposition. Microstructure and Permselectivity of SiO2/C/Vycor Membrane,” Ind. Eng. Chem. Res., 31, 1293, 1992.
[28] S. Kitao, and M. Asaeda, “Gas Separation Performance of Thin Porous Silica Membrane Prepared by Sol-Gel and CVD Methods,” Proc. 2nd Int. Conf. Inorg. Membranex, Key Engineering. Materials., eds. A.J. Burggraaf, J. Chapin and L. Cot Trans Tech Publication, Switzerland, 61/62, 267, 1991.
[29] S. Morooka, S.-C. Yan, H. Maeda, K. Kuaskabe, and Y. Akiyama, “Hydrogen-Permselective SiO2 Membrane Formed in Pores of Alumina Support Tube by Chemical Vapor Deposition with Tetraethyl Orthosilicate,” Ind. Eng. Chem. Res., 33, 2096, 1994.
[30] B.-K. Sea, E. Soewito, M. Watanabe, K. Kusakabe, S. Morooka, and S.-S. Kim, “ Hydrogen Recovery from a H2-H2O-HBr Mixture Utilizing Silica-Based Membranes at Elevated Temperatures. 1. Preparation of H2O- and H2-Selective Membranes,” Ind. Eng. Chem. Res., 37, 2502, 1998.
[31] B.-K. Sea, K. Kusakabe, S. Morooka, “ Pore size control and gas permeation kinetics of silica membranes by pyrolysis of phenyl-substituted ethoxysilanes with cross-flow through a porous support wall,” J. Memb. Sci., 130, 41, 1997.
[32] S. M. George, A. W. Ott, J. W. Klaus, and J. M. Johnson, “Modification of Porous Alumina Membranes Using Al2O3 Atomic Layer Controlled Deposition,” Chem. Mater., 9, 707, 1997.
[33] S.M. George, M. A. Cameron, I. P. Gartland, J. A. Smith, and S. F. Diaz. “Atomic Layer Deposition of SiO2 and TiO2 in Alumina Tubular Membranes : Pore Reduction and Effect of Surface Species on Gas Transport.” Langmuir., 16, 19, 2000.
[34] R. J. R. Uhlhorn, K. Keizer and A. J. Burggraaf, “High Permselectivities of Microporous Silica-Modified τ-Alumina Membranes.” J Mater. Science Lett. 8, 1135, 1989.
[35] W. Xu, J. Dong, J. Li, and F. Wu, “A Novel Method for the Preparation of Zeolite ZSM-5,” J. Chem. Soc. Chem. Commun., 755, 10, 1990.
[36] T. Sano, Y. Kiyozumi, K. Maeda, M. Toba, S. Niwa, and F. Mizukami, “New Preparation Method for Highly Siliceous Zeolite Film,” J. Mater. Chem., 2, 1, 141, 1992.
[37] J. C. Jansen and G. M. van-Rosmalen, “ Oriented Growth of Silica Molecular Sieve Crystals as Supported Films,” J. Crystal Growth, 128, 1150, 1993.
[38] J. N. Armor, “ Materials Needs for Cataysts to Improve our Environment,” Chem.Master., 6, 730, 1994.
[39] Chiou, T. G. Tsai, S. L. Sung, H. C. Shih, C. N. Wu, and K.J. Chao, “ Synthesis and Character Y.H.ization of Zeolite (MFI) Membrane on Anodic Alumina,” J. Chem. Soc., Faraday Trans., 92, 6, 1061, 1996.
[40] M. C. Lovallo, and M. Tsapatsis, “ Preparation of an Asymetric Zeolite L Film,” Chem. Mater., 8, 1579, 1996.
[41] H. Peker, M. P. Srinivasan, J. M. Smith, and B. J. C. Mccoy, “Caffeine Extraction Rates from Coffee Beans with Supercritical Carbon Dioxide,” J. AICHE., 38, 5, 761, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top