跳到主要內容

臺灣博碩士論文加值系統

(3.238.225.8) 您好!臺灣時間:2022/08/09 01:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江岱臻
論文名稱:在超臨界二氧化碳中利用經液相沈積法改質之ZSM-5為觸媒進行甲苯與異丙醇之反應
指導教授:談駿嵩談駿嵩引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:烷化反應超臨界二氧化碳對異丙基甲苯甲苯異丙醇化學液相沈積法
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對異丙基甲苯(p-Cymene)在工業上具有重要的用途,它可用來生產殺菌劑、殺蟲劑、香料等物質。製得對異丙基甲苯方法之一是經由甲苯與異丙醇在沸石上之烷化反應,惟此反應會產生對、鄰、間異丙基甲苯之同分異構物。欲得到高純度之對異丙基甲苯,以CVD或CLD修飾沸石孔徑大小是常用的方法。為得到高產率及高選擇率的對異丙基甲苯,並抑制焦碳在觸媒表面之生成,使其壽命得以延長,本研究利用超臨界二氧化碳流體當作甲苯與異丙醇烷化反應的載體。
此烷化反應在一固定床反應器中進行,所用的觸媒則是利用CLD方法以SiCl4改質的ZSM-5顆粒觸媒。觸媒改質方法是將含特定量水的HZSM-5觸媒顆粒放入正己烷和改質劑混合溶液中,進行化學液相沈積改質。在常壓操作下使用了改質劑SiCl4與TEOS,觀察到SiCl4可得到較高的對異丙基甲苯選擇率。
本研究探討的變數有溫度、壓力及甲苯WHSV(g of toluene)/(g of catalyst)/h,其範圍分別是200∼300℃、1500∼2500 psi 及 2∼8 (g of toluene)/(g of catalyst)/h。在常壓下使用改質HZSM-5觸媒時,當操作條件為溫度250℃、甲苯WHSV為6.5 (g of toluene)/(g of catalyst)/h 及甲苯/異丙醇莫耳比為11.02時,可得到最佳的對異丙基甲苯產率 (50.0 %)及選擇率 (91.9 %)。在超臨界二氧化碳狀態下操作時,反應之產物水會造成對異丙基甲苯產率與選擇率隨時間而遞減的情形,但增加溫度及壓力是有利於水的移除。實驗結果顯示當壓力為2500 psi、溫度為270℃、甲苯WHSV為 6.5 (g of toluene)/(g of catalyst)/h 及甲苯/異丙醇莫耳比為11.02時,可得到最高的對異丙基甲苯產率 (85.6 %)及選擇率 (93.8 %),且在實驗時間五小時內,其產率與選擇率已達穩定。由實驗結果觀察到在高壓下,其對異丙基甲苯產率與選擇率皆隨壓力的增加而增加,這是因為增加壓力有助於水之移除,但因考慮操作成本及安全問題,較佳之操作壓力為2500 psi。在超臨界狀態下操作,所得最高對異丙基甲苯產率 85.57 %高出常壓之50 %甚多,且其選擇率也高達93.8%,達到生產高產率及高純度對異丙基甲苯之目的。

目錄
摘要 Ⅰ
目錄 Ⅲ
表目錄 Ⅴ
圖目錄 Ⅵ
壹、緒論 1
貳、文獻回顧 5
2-1、ZSM-5觸媒之相關文獻 5
2-1-1、ZSM-5觸媒之結構及特性 5
2-1-2、ZSM-5觸媒應用之概況及其優點 7
2-1-3、改良ZSM-5觸媒的目的、方法及應用 10
2-2、在超臨界流體環境下進行化學反應之相關文獻 15
2-2-1、在超臨界流體環境下進行化學反應之優點 15
2-2-2、在超臨界流體環境下進行化學反應之應用 16
參、實驗部份 22
3-1、實驗裝置與步驟 22
3-1-1、反應器及加熱爐 22
3-1-2、進料控制設備 23
3-1-3、實驗步驟 23
3-1-3-1、觸媒的改質 26
3-1-3-2觸媒之前處理(常壓區) 26
3-1-3-3、固定床烷化反應(高壓區) 27
3-1-3-4、產物分析 28
3-2、實驗儀器 28
3-3、實驗藥品 30
肆、實驗結果與討論 32
4-1、再現性實驗 33
4-2、改質劑的比較 37
4-3、常壓實驗 44
4-4、超臨界條件下之甲苯WHSV效應 48
4-5、超臨界條件下之溫度效應 61
4-6、超臨界條件下之壓力效應 71
五、結論 79
陸、參考文獻 80

(1) Garwood, W. E.; Venuto, P. B. Paraffin-Olefin Alkylation over a Crystalline Aluminosilicate. J. Catal. 1968, 11, 175.
(2) Hatch, L. F.; Mater, S. Hydrocarbons to Petrochemicals. Hydrocarbon Process. 1979, 58, 189.
(3) Kaeding, W. W.; Chu, C.; Young, L. B.; Weinstein, B.; Butter, S. A. Selective Alkylation of Toluene with Methonal to Produce para-Xylene. J. Catal. 1981, 67, 159.
(4) Flockhart, B. D.; Liew, K. Y.; Pink, R. C. Alkylation of Toluene with Propene Using Zeolite Catalysts. J. Catal. 1981, 72, 314.
(5) Parikh, P. A.; Subrahmanyam, N.; Bhat, Y. S.; Halgeri, A. B. Toluene Isopropylation over Zeolite β and Metallosilicates of MFI Structure. Appl. Catal. A 1992, 90, 1.
(6) Cejka, J.; Kapustin, G. A.; Wichterlova, B. Factor Controlling iso/n- and para- Selectivity in the Alkylation of Toluene with Isopropanol on Molecular Sieves. Appl. Catal. A 1994, 108, 187.
(7) Wichterlova, B.; Cejka, J.; Zilkova, N. Selectivity Synthesis of Cumene and p-Cymene over Al and Fe Silicates with Large and Medium Pore Structure. Microporous Mater. 1996, 6, 405.
(8) Reddy, K. S. N.; Rao, B. S.; Shiralkar, V. P. Selectivity Formation of Cymenes over Large Pore Zeolites. Appl. Catal. A 1995, 121, 191.
(9) Perego, C.; Amarilli, S.; Carati, A.; Flego, C.; Pazzuconi, G.; Rizzo, C.; Bellussi, G. Mesoporous Silica-Aluminas as Catalysts for the Alkylation of Aromatics Hydrocarbons with Olefins. Microporous mesoporous mater. 1999, 27, 345.
(10) Csicsery, S. M. Zeolites 1984, 4, 202
(11) Breck, D. W. Zeolite Molecular Sieves. New York, Wiley, 1974.
(12)Kuo, T. W.; Tan, C. C. Alkylation of Toluene with Propylene in Supercritical Carbon Dioxide over Chemical Liquid Deposition HZSM-5 Pellets. Ind. Eng. Chem. Res. 2001, 40, 4724.
(13)Argauer, R. J.; Landolt, G. R. U. S. Patent 1972, 3720886.
(14)Kokotailo, G. T.; Lawton, S. L.; Olson, D. H.; Meier, W. M. Structure of Synthetic Zeolite ZSM-5. Nature 1978, 272, 437.
(15)James, W. A Mathematical Theory of Enhanced para-Xylene Selectivity in Molecular Sieve Catalysts. J. Catal. 1982. 76, 433.
(16)Vedrine, J. C.; Auroux, A.; Bolis, V.; Dejaifve, P.; Naccache, C.; Wierchowski, P.; Derouane, E. G.; Nagy, J. B.; Gilson, J. P.; Van Hoff, J. H. C.; Van Den Berg, J. P.; Wolthuizen, J. P. Infrared, Microcalorimetric, and Electron Spin Resonance Investigations of the Acidic Properties of the H-ZSM-5 Zeolite. J. Catal. 1979, 59, 248.
(17)Chen, N. Y.; Yan, T. Y. M2 Forming-A Process for Aromatization of Light Hydrocarbons. Ind. Eng. Chem. Res. 1986, 25, 151.
(18)Penchev, V.; Minchev, C.; Kanazirev, V.; Pencheva, O.; Pencheva, N.; Kosova, L.; Lechert, H.; Kacirek, H. Thermochemical and Acidic Properties of the Zeolites Offretite, Omega and ZSM-5. Zeolite 1983, 3, 249.
(19)Dwyer, F. G.; Lewis, P. J.; Schneider, F. H. Efficient, Nonpolluting Ethylbenzene Process. Chem. Eng. 1976, 83, 90.
(20)Olson, D. H.; Haag, W. O. Catalytic Materials Relationship between Structure and Reactivity. ACS, D. C. 1984, 275.
(21)陳美惠, "以改良型ZSM-5 觸媒合成對二烷基苯," 碩士論文國立清華大學化學工程研究所(1986)。
(22)Chang, C. D.; Lang, W. H.; Silvestri, A. J. Synthesis Gas Aromatic Hydrocarbons. J. Catal. 1979, 56, 268.
(23)Chen, N. Y. U. S. Patent 1973, 3729409.
(24)Chang C. D. Hydrocarbons from Methanol. Catal. Rev. Sci. Eng. 1983, 25, 1.
(25)Chen, N. Y.; Gorring, H. R.; Ireland, H. R.; Stein, T. R. Oil Gas J. 1977, 75, 165.
(26)Young, L. B.; Butter, S. A.; Kaeding, W. W. Shape Selective Reaction with Zeolite Catalysts, Ⅲ. Selectivity in Xylene Isomerization, Toluene-Methonal Alkylation, and Toluene Disproportionation over ZSM-5 Zeolite Catalysts. J. Catal. 1982, 76, 418.
(27)李秉傑, "以不飽和二碳烴與單環芳香烴的烷化反應探討ZSM-5觸媒之特性," 博士論文, 國立清華大學化學工程研究所(1985)
(28)Kaeding, W. W.; Young, L. B.; Chu, C. C. Shape-Selective Reactions with Catalysts, Ⅳ. Alkylation of Toluene with Ethylene to Produce p-Ethyltoluene. J. Catal. 1984, 89, 267.
(29)Lago, R. M.; Haag, W. O.; Mikovsky, R. J.; Olsin, D. H.; Hellring, S. D. Nato Asi Series: New Developments in Zeolite Sci. Tech. 1981, 667.
(30)Wang, J.; Ay, C. L.; Lee, B.J.; Chen, M. H. Para-selectivity of Dialkylbenzenes over Modified HZSM-5 by Vapor Phase Deposition of Silica. Appl. Catal. 1989, 54, 257.
(31)Niwa, M.; Itoh, H.; Kato, S.; Hattori, T.; Murakami, Y. Modification of H-Mordenite by a Vapor-phase Deposition Method. J. Chem. Soc., Chem. Commun. 1982, 15, 819.
(32)Niwa, M.; Kawashima, Y.; Murakami, Y. A Shape-Selective Platinum-loaded Mordenite Catalyst for the Hydrocracking of Paraffins by the Chemical Vapour Deposition of Silicon Alkoxide. J. Chem. Soc., Faraday Trans1. 1985, 81, 2757.
(33)Yue, Y. H.; Tang, Y.; Liu, Y.; Gao, Z. Chemical Liquid Deposition Zeolites with Controlled Pore-Opening Size and Shape-Selective Separation of Isomers. Ind. Eng. Chem. Res. 1996, 35, 430.
(34)Savage, P. E.; Gopalan, S.; Mizan, T. I.; Martino, C. J.; Brock, E. E. Reactions at Supercritical Conditions: Applications and Fundamentals. AIChE J. 1995, 41, 1723.
(35)Baiker, A. Supercritical Fluids in Heterogeneous Catalysis. Chem. Rev. 1999, 99, 453.
(36)Lang, X.; Akgerman, A.; Bukur, D. B. Steady State Fisher-Tropsch Synthesis in Supercritical Propane. Ind. Eng. Chem. Res. 1995, 34, 72.
(37)Fan, L.; Nakamura, I.; Ishida, S.; Fujimoto, K. Supercritical-Phase Alkylation Reaction on Solid Acid Catalysts: Mechanistic Study and Catalyst Development. Ind. Eng. Chem. Res. 1997, 36, 1458.
(38)Chandler, K.; Deng, F.; Dillow, A. K.; Liotta, C. L.; Eckert, C. A. Alkylation Reactions in Near-Critical Water in the Absence of Acid Catalysts. Ind. Eng. Chem. Res. 1997, 365, 5175.
(39)Hitzler, M. G.; Poliakoff, M. Continuous Hydrogenation of Organic Compounds in Supercritical Fluids. Chem. Commun. 1997, 1667.
(40)Hitzler, M. G.; Smail, F. R.; Ross, S. K.; Poliakoff, M. Friedel-Crafts Alkylation in Supercritical Fluids: Continuous, Selective and Clean. Chem. Commun. 1998, 359.
(41)Clark, C. M.; Subramaniam, B. Extended Alkylate Production Activity during Fixed-Bed Supercritical 1-Butene/Isobutane Alkylation on Solid Acid Catalysts Using Carbon Dioxide as a Diluent. Ind. Eng. Chem. Res. 1998, 37, 1243.
(42)Gao, Y.; Shi, Y. F.; Zhu, Z. N.; Yuan, W. K. Coking Mechanism of Zeolite for Supercritical Fluid Alkylation of Benzene. High Pressure Chem. Eng. 1996 151.
(43) Gao, Y.; Shi, Y. F.; Yuan, W. K. Benzene-Ethylene Alkylation in Near-Critical Regions. Ind. Eng. Chem. Res. 2001, 20, 4253.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top