跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/30 00:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐宏昌
研究生(外文):Hung-Chang Hsu
論文名稱:平行計算於押出成型模擬分析之應用
論文名稱(外文):Application of parallel calculation to extrusion process simulation
指導教授:張榮語張榮語引用關係
指導教授(外文):Rong-Yeu Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:79
中文關鍵詞:押出成型體心共位有限體積法個人電腦叢集平行計算區域分割
外文關鍵詞:extrusion processCollocated Cell-Centered Finite Volume MethodPC Clusterparallel algorithmdomain decomposition
相關次數:
  • 被引用被引用:1
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是利用個人電腦叢集(PC Cluster)之平行電腦搭配平行演算法,將使用體心共位有限體積法(Collocated Cell-Centered Finite Volume Method)之三維模擬循序程式平行化,以加快整個模擬分析之效率。並應用此平行化程式來模擬三維非恆溫泛牛頓流體於押出成型模頭中流動行為,以了解其速度場、壓力、溫度在三維空間中的分佈情形,且藉由改變網格元素數目的多寡來分析及討論其對平行計算效率的影響。
本研究在平行計算的施行方式上是採用區域分割(domain decomposition)方式將資料預先作切割,並配合SPMD(Single Program Multiple Data)平行程式的撰寫來進行平行計算,平行程式中所需資料的交換則使用MPI(Message Passing Interface)傳輸標準。另外在線性聯立方程組疊代求解上,則使用Jacobi前置處理之CG法及BICGSTAB法。
在循序程式及平行程式的模擬驗證上,程式的計算結果皆與文獻中的計算結果相當吻合,可證明此數值計算方法之正確性。而在不同網格元素的衣架形模具模擬上顯示,隨著分析的網格元素增加,其平行計算效率就會愈好,因此對於愈複雜的三維幾何分析上愈值得利用平行計算方式來減少分析計算時間。
The study is to improve efficiency of three-dimensional flow simulation by parallel Collocated Cell-Centered Finite Volume Method by PC Cluster and parallel algorithm. We apply the parallel program to simulate extrusion process of the non-isothermal generalized Newtonian fluid in extrusion die. And will predict the distribution of velocity, pressure, and temperature in the three-dimensional space. We also change the number of elements of the grid and discuss its affection on efficiency of parallel simulation.
In research, we adopt domain decomposition method to separate data previously, and use SPMD(Single Program Multiple Date) parallel program type to process parallel code. The data needed to exchange in simulation is achieved by MPI(Message Passing Interface). Besides, CG and GICGSTAB methods accompanied with Jacobi pre-conditioned method are used to solve linear equations.
The parallel simulation is of accuracy for results obtained from sequential and parallel algorithm, are almost the same with the references. On the other hand, since the simulation results of different number of elements reveal that parallel simulation is more efficient as elements increase, it''s worthwhile to adopt parallel simulation in cases with more complicated geometry.
摘要 I
ABSTRACT II
目錄 III
圖目錄 VI
表目錄 X
符號說明 XI
重要名詞中英對照 XIII
第一章、緒論 1
1-1研究目的與動機 1
1-2個人電腦叢集與平行計算 2
1-2-1個人電腦叢集之發展 2
1-2-2平行計算原理 5
1-2-3 MPI平行計算架構 7
1-3押出成型簡介 11
第二章、文獻回顧 14
2-1押出成型分析 14
2-2數值計算方法 15
2-3線性聯立方程組求解法 17
2-4區域分割計算方法 18
第三章、研究方法 19
3-1押出成形理論分析 19
3-1-1基本假設 19
3-1-2統御方程式 20
3-1-3邊界條件 21
3-2共位體心式有限體積法推導 22
3-2-1動量方程式的離散計算 23
3-2-2連續方程式的離散計算 24
3-2-3 SIMPLE去耦合疊代法 26
3-2-4能量方程式的離散計算 27
3-2-5循序計算流程 27
3-3區域分割方法 29
3-3-1分割流程 30
3-3-2界面資料交換處理 32
3-4線性聯立方程組求解之平行處理 33
3-5平行計算流程 36
第四章、結果與討論 39
4-1個人電腦叢集系統CAEPCC 39
4-1-1硬體設備 39
4-1-2軟體架構 42
4-1-3傳輸性能測試 43
4-2模擬計算之驗證 44
4-2-1循序計算結果正確性驗證 44
4-1-2平行計算結果正確性驗證 51
4-3衣架形平板押出模具之模擬 54
4-4平行計算效率探討 60
4-4-1效率值與加速比定義 60
4-4-2衣架形模頭模擬結果之平行效率探討 61
第五章、結論與展望 72
參考文獻 74
附錄 78
附錄A 衣架形押出模具之設計圖 78
1. C. A. Hieber and S. F. Shen, Flow analysis of the non-isothermal two-dimensional filling process in injection molding, Israel J. Tech.., 16, 248, 1978.
2. http://www.beowulf.org/
3. M. S. Warren, J. K. Salmon, et al., Pentium ProInside: (Ⅰ). A Treecode at 430 Gigaflops on ASCI Red (Ⅱ). Price/Performance of $50/Mflops on Loki and Hyglac, Los Alamos National Labortory and Center for Advanced Computing Research, Caltech, 1997.
4. M. Snir, S. Otto, et al., MPI: The Complete Reference, The MIT Press, Cambridge, Massachusetts, 1996.
5. V. Sunderam, PVM: A Framework for Parallel Distributed Computing, Cocurrency: Practice and Experience, 1990.
6. http://www-unix.mcs.anl.gov/mpi/mpich/
7. C. Rauwendaal, Polymer Extrusion, Hanser Publishers, New York, 1990.
8. W. Michaeli, Extrusion Dies for Plastics and Rubber, Hanser Publishers, New York, 1992.
9. E. A. Muccio, Plastics Processing Technology, ASM International, United States of America, 1994.
10. D. H. Morton-Jones, Polymer Processing, Chapman & Hall, London, 1989.
11. Z. Tadmor and E. Broyer, Flow analysis network (FAN) A method for solving flow problems in polymer processing, Polym. Eng. Sci., 14, 660, 1974.
12. C.C. Lee, An improved flow analysis network (FAN) method for irregular geometries, Polym. Eng. Sci., 30, 1607, 1990.
13. P. Hurez and P.A. Tanguy, Numerical simulation of profile extrusion dies without flow separation, Polym. Eng. Sci., 33, 971, 1993.
14. D. Seo and J.R. Youn, Flow analysis of profile extrusion by a modified cross-sectional numerical method, Fibers and Polymers, 1, 103, 2000.
15. M. B. Bush and N. Phan-Thien, Three dimensional viscous flows with a free surface: flow out of a long square die, J. Non-Newtonian Fluid Mech., 18, 211, 1985.
16. T. Tran-Cong and N. Phan-Thien, Die design by a boundary element method, J. Non-Newtonian Fluid Mech., 30, 37, 1988.
17. T. Tran-Cong and N. Phan-Thien, Three dimensional study of extrusion processes by boundary element method Ⅰ. An implementation of high order elements and some Newtonian results, Rheol. Acta., 27, 21, 1988.
18. T. Tran-Cong and N. Phan-Thien, Three dimensional study of extrusion processes by boundary element method Ⅱ. Extrusion of a viscoelastic fluid, Rheol. Acta., 27, 639, 1988.
19. A. Karagiannis, A.N. Hrymak and J. Vlachopoulos, Three-dimensional non-isothermal extrusion flows, Rheol. Acta., 28 , 121, 1989.
20. A. Karagiannis, A.N. Hrymak and J. Vlachopoulos, Three-dimensional studies of bicomponent extrusion, Rheol. Acta., 29, 71, 1990.
21. K.R.J. Ellwood, T.C. Papanastasiou and J.O. Wilks, Three-dimensional streamlined finite elements: design of extrusion dies, Int. J. Num. Meth. Fluids, 14, 13, 1992.
22. R.I. Tanner, N. Phan-Thien and X. Huang, Two- and three-dimensional finite volume methods for flows of viscoelastic fluids, Proceedings of the Fourth European Congress on Rheology, Seville, Spain, 362, 1994.
23. S.C. Xue, N. Phan-Thien and R.I. Tanner, Numerical study of secondary flows of viscoelastic fluid in straight pipes by an implicit finite volume method, J. Non-Newtonian Fluid Mech., 59, 191, 1995.
24. J.R. Clermont, Calculation of kinematic histories in two- and three-dimensional flows using streamline coordinate functions, Rheol. Acta., 32 , 82, 1993.
25. M. Normandin and J.R. Clermont, Three-dimensional extrudate swell: formulation with the stream-tube method and numerical results for a Newtonian fluid, Int. J. Num. Meth. Fluids, 23, 937, 1996.
26. S. Kihara, T. Gouda, K. Matsunaga and K. Funatsu, Numerical simulation of three-dimensional viscoelastic flow within dies, Polym. Eng. Sci., 39, 152, 1999.
27. C.M. Lee and D.Y. Yang, A three-dimensional steady-state finite element analysis of square die extrusion by using automatic mesh generation, Int. J. Mach. Tool. Manu., 40, 33, 2000.
28. J. Kim, J. R. Youn and J. C. Hyun, Three dimensional flow analysis within a profile extrusion die by using control volume finite-element method, Korea-Australia Rheol. J., 13, 97, 2001.
29. 郭至平,應用卡氏網格於押出成型之三維CAE分析,碩士論文,國立清華大學化學工程學系,2001。
30. W. F. Ames, Numerical Methods for Partial Differential Equations, Academic Press, New York, 1977.
31. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, McGRAW-Hill, 1989.
32. R. Y. Chang and W. H. Yang, Numerical Simulation of Mold Filling in Injection Molding Using a Three-Dimensional Finite Volume Approach, submitted to Int. J. Numer. Methods Fluids, 2000.
33. 楊文賢,有限體積法在塑膠射出成型三維流動分析之研究,博士論文,國立清華大學化學工程學系,2001。
34. L. N. Trefethen and D. Bau, Ⅲ. Numerical Linear Algebra, SIAM, 1997.
35. V. Kumar, A. Gramma, A. Gupta and G. Karypis, Introduction to Parallel Computing: Design and Analysis of Algorithms, Benjamin / Cummings, New York, 1994.
36. Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing company, Boston, 1996.
37. T. F. Chan and T. P. Mathew, Domain Decomposition Algorithms, in Acta Numerica, Cambridge University Press, 61, 1994.
38. A. Quarteroni, Y.A. Kuznetsov, J. Periaux, and O. B. Wilund, Domain Decomposition Methods in Sciences and Engineering, The Sixth International Symposium on Domain Decomposition, Como, Italy, June 15-19, 1992. Volume 157, AMS, Providence, RI, 1994.
39. T. F. Chan, R. Glowinski. J. Periaux, and O. B. Wilund, Domain Decomposition Methods, SIAM, Philadelphia, 1989.
40. M.T. Wang, W.H. Sheu, An element-by-element BICGSTAB iterative method for three-dimensional steady Navier-Stokes equations, Journal of Computational and Applied Mathematices 79, 147, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top