跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/14 15:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹駿卿
論文名稱:以Ni-SDC作為直接甲烷固態氧化物燃料電池陽極觸媒材料之研究
論文名稱(外文):Study of Ni-SDC anode for direct oxidation of methane in a solid-oxide fuel cell
指導教授:黃大仁黃大仁引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:71
中文關鍵詞:氧化釤添加氧化鈰開路電位陽極觸媒微結構固態氧化物燃料電池
外文關鍵詞:SDCOpen Circuit Voltageanodic-catalystmicrostructureSOFC
相關次數:
  • 被引用被引用:1
  • 點閱點閱:447
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究是以氧化釤添加氧化鈰(SDC)作為固態氧化物燃料電池之陽極觸媒材料,在開路電位的狀態下,進行甲烷內部直接氧化反應的探討。以不同的Ni觸媒擔載量,擔載在(CeO2)0.8(SmO1.5)0.2的SDC擔體上,反應溫度操作於600℃,陽極進料氣體為10ml/min CH4與90ml/min Ar。利用開路電位的測量、極化曲線的研究以及長時間操作下觸媒活性的觀察,探討Ni觸媒的擔載量對於陽極電極特性與催化活性的影響。
實驗結果發現,直接甲烷燃料電池之開路電位高低以及極化現象與Ni觸媒的擔載量有關,當Ni的擔載量達60%時,有最高的開路電位與最小的極化現象,原因應與陽極微結構有關。實驗結果也發現陽極極化的主要原因為陰極端氧離子的供給速率太慢造成陽極端濃度極化。
以Ni-SDC與Ni-YSZ相比,以Ni-YSZ作為陽極觸媒,其電池的開路電位相較於Ni-SDC要來的低,且極化現象也來的嚴重許多。
分別以Ni(30)SDC以及Ni(60)SDC作為陽極觸媒,在經過長時間操作之後發現,以Ni(30)SDC作為陽極觸媒時,觸媒的活性會因積碳的生成而失活,而Ni(60)SDC因為有著良好的觸媒層微結構,故呈現良好的觸媒活性與穩定性。

目 錄
摘要 I
目錄 II
圖目錄 IV
表目錄 VI
第一章 序論 1
第二章 文獻回顧 9
2-1固態氧化物電解質及其應用 9
2-2陽極電化學反應機構及材料選擇 15
2-2.1電化學反應機構 15
2-2.2混合導體 19
2-2.3材料選擇 21
2-2.4電催化反應 23
2-3陽極電化學反應 26
2-4 SOFC之設計 27
第三章 實驗方法 34
3-1實驗藥品 34
3-2陽極材料製備 35
3-3實驗儀器 38
3-4實驗裝置圖 39
3-5實驗流程 40
第四章 研究結果與討論 43
4-1陽極觸媒性質測定 43
4-1.1 BET表面積 43
4-2陽極觸媒之電化學分析 44
4-2.1開路電位測量與分析 44
4-2.2電流-過電位特性分析 45
4-2.3電極穩定度測試 51
4-3甲烷直接氧化活性測試 52
4-4 Ni-SDC之陽極微結構 61
第五章 結論 64
第六章 未來研究 65
參考文獻 66
圖目錄
圖1-1燃料電池之發電原理 2
圖1-2氧離子導體SOFC之反應概略圖 5
圖1-3氫離子導體SOFC之反應概略圖 5
圖2-1螢石結構圖 10
圖2-2穩定化氧化鋯的電解區範圍 12
圖2-3陽極反應機構簡圖 16
圖2-4 SOFC之電極反應(a)(c)傳統電極(b)(d)改良電極 18
圖2-5 1000℃時甲烷蒸氣重組轉化率與反應時間關係圖 19
圖2-6 NEMCA原理示意圖 24
圖2-7圓柱管型SOFC (a)單一圓柱管之剖面圖(b)單一圓柱管之構造圖(c)圓柱管束電池組設計圖 28
圖2-8環結連接型SOFC (a)圓筒柱套接式構造圖(b)支撐管式環節連接構造圖 30
圖2-9 Honeycomb Monolithic型SOFC構造圖 32
圖2-10 Flat-Plate型SOFC構造圖 33
圖3-1實驗裝置圖 38
圖3-2 BET表面積系統圖 39
圖4-1分別以YSZ與SDC擔載Ni觸媒量與開路電位之關係圖 44
圖4-2不同Ni擔載量於SDC上之陽極極化曲線圖 49
圖4-3供給固定電流2mA時陽極極化現象與Ni擔載量關係圖 50
圖4-4在不同進料氣體下以Ni(60)SDC為陽極觸媒之陽極極化曲線圖 50
圖4-5分別以Ni/SDC與Ni/YSZ為陽極觸媒之陽極極化曲線圖 51
圖4-6於Ni(60)SDC供給固定電流4mA時陽極極化與時間關係圖 52
圖4-7 Ni(30)SDC於開路電位下甲烷轉化率與時間關係圖 57
圖4-8 Ni(30)SDC於開路電位下氫氣選擇率與時間關係圖 57
圖4-9 Ni(30)SDC於開路電位下H2生成速率與時間關係圖 58
圖4-10 Ni(30)SDC於開路電位下CO生成速率與時間關係圖 58
圖4-11 Ni(60)SDC於開路電位下甲烷轉化率與時間關係圖 59
圖4-12 Ni(60)SDC於開路電位下氫氣選擇率與時間關係圖 59
圖4-13 Ni(60)SDC於開路電位下H2生成速率與時間關係圖 60
圖4-14 Ni(60)SDC於開路電位下CO生成速率與時間關係圖 60
圖4-15 Sketch of the possible microstructure of the anode with Ni content about 50 Vol.% 61
圖4-16 SEM micrographs of Ni-SDC anode structure with different content of Ni:(A)40,(B)50,(C)60,(D)70 wt.% 65
表目錄
表1-1 各種燃料電池基本特性的比較 4
表2-1 稀土族元素-摻入氧化鈰系列的氧化物,在800℃之導電度及離子遷移係數 22
表2-2電催化反應研究之整理 25
表4-1各組電極觸媒之BET表面積 43
表4-2陽極觸媒物種與開路電位關係表 44
表4-3各組電極觸媒之積碳量 56

1.Proceedings of fuel cell, COE/TPC/ITRI, 1 (1999)
2.N. Q. Minh, “Ceramic Fuel Cell”, J. Am. Ceram. Soc., 76, 563 (1993)
3.O. Yamamoto, “Application-Solid oxide fuel cell”, in Solid State Electrochemistry, Ed. by Peter G. Bruce, Cambridge University Press, 315 (1995)
4.M. Koyama, Ching-ju Wen, and Koichi Yamada, “La0.6Ba0.4CoO3 as a cathode material for solid oxide fuel cell using a BaCeO3 electrolyte”, J. Electrochem. Soc., 147, 87 (2000)
5.V. Dusastrre, J.A. Kilner, “Optimisation of composite cathodes for intermediate temperature SOFC application”, Solid State Ionic, 126, 163 (1999)
6.A. Hammou and J. Guindet, “Solid Oxide Fuel Cell”, in the CRC Handbook of Solid State Electrochemistry, P. T. Gellmgs and H. J. M. Bouwmeester, Eds., CRC Press., 407 (1997)
7.C.G.Vaynas, “Catalytic and Electrocatalytic Reactions in Solid Oxide Fuel Cells”, Solid State Ionics, Vol.28, p1521,1988.
8.M.Stoukids, “Application of Solid Electrolytes in Heterogeneous Catalysis”, Ind. Eng. Chem. Res., Vol.27, p1745,1988.
9.P. J. Gellings, H. J. A. Koopmas, and A. J. Burggraaf, “Electrocatalytic Phenomena in Gas Phase Reactions in Solid Electrolyte Electrochemical Cells”, Appl; Catal. Vol.39, p1, 1989
10.H. G. Lintz and C. G. ayenas, “Solid Ion Conductors in Heterogeneous Catalytis”, Angew. Chem. Int. Ed. Engl., Vol.28, p708, 1989.
11.C.Wagner, “Adsorbed Atomic Species as Intermediates in Heterogeneous Catalysis”,adv. Catal. Vol.21, p323, 1970.
12.C. G. Vayenas and H. M. Saltsburg, “Chemistry at Catalytic Surfacce-The SO2 Oxidation on Nobel Metals”,J. Catal., Vol.57, p296, 1979.
13.C.G. Vayenas and S. Neophytides, “Non-Faradaic Electrochemical Modification of Catalytic Activity-3.The Case of Methanol Oxidation on Pt”, J. Catal., Vol.127,645,1991.
14.C.G. Vayenas, S. Bebelis, and M. Despotopoulou, “Non-Faradaic Electrochemical Modification of Catalytic Activity-4.The Use of β-Al2O3 as the Solid Electrolyte”, J.Catal. Vol.128,p415,1991.
15.S. Ladas, S. Bebelis, and C.G. Vayenas, ”Work Function Measurements on Catalyst Film Subject to in situ Electrochemical Promotion”, Surf. Sci., Vol.251,p1062,1991.
16.C.G.Vayenas,S.I.Bebelis,and C.C. Kyriazis, “Cogeneration:Electricity+Chemicals-Part2.Nonfaradaic catalysis”,Chemtech, Vol.21,p500,1991.
17.J. B. Goodenough, “Ceramic solid electrolytes”, Solid State Ionics, 94, 17 (1997)
18.J. B. Goodenough, “Oxide-ion conductors by design”, Nature, 404, 821 (2000)
19.H. Inaba, H. Tagawa, “Review Ceria-based solid electrolytes”, Solid State Ionics, 83, 1 (1996)
20.H. L. Tuller, in “Nonstoichiometric Oxides”. Academic Press Inc.,Chap.6, 1981.
21.N.Q.Minh,J.Am. Ceram .,Vol.76,p563,1993
22.PJ.GellingsandH.J.M.Bouwmeester,CatalysisToday,Vol.l2,pl,1991
23. P. J. Gellings, H. J.A.Koopmans and A.J.Burggraaf Appl.Catal.,Vol.39,p1,1988
24. E C.Subbarao, "SohdElectrolytesandTheirApplications", Plenum, Press, NewYork,1980
25. T H.EtsellandS.N.Flengas, ”Overotential Behavior of Stabilizied Zirconia Solid Electrolyte Fuel Cell”, J, Electrochem.Soc. ,Vol.118,p1890,1971﹒
26. C,G,Vayenas,H.M.Saltsburg, ”Chemistry at Catalytic Surfaces-The SO2 Oxidation on Nobel Metals", J.Catal.,Vol.57,p296,1979
27. C.G.Vayenas, B.Lee, and J.Michaels, "Kinetics, Limit Cycles, and Mechanism of the Ethylene Oxidation on Paltinum", J.Catal., Vo1.66, p36,1980
28. M.Stoukides and C.G.Vayenas, ”Solid Electrolyte Aided Study of the Ethylene Oxide Oxidationon Silver”,J. Catal., Vol.64,pl8,1980
29. C.Saranteas and M,Stoukides, J.Catal.,Vol.93,p417,1985
30. D.Eng, M.Stoukides and T.McNally,J.Catal.,Vol.106,p342,1987
31. C.G.Vayenas,C.Georgakis,J.N,Michaels and J.Tormo, J.Catal.,Vol.67,p348, 1981
32. C.G.Vayenas and J.N.Michaels,Surf.Sci.,Vol.120,p405,1982
33. H.Okamoto,G.Kawamura and T.Kudo,Solid State Ionics, Vol.3/4, p453, 1981H
34. H.Okamoto,G,Kawamura and T.Kudo,J.Catal.,Vol.87,pl, 1984
35. C.G.Vayenas,J.Catal.,Vol.90, p371,1984
36. M.Stoukides and C.G.Vayenas,J.Catal.,Vol.74,p266,1982
37. M.Stoukides,S.Seimanides and C.G.Vayenas,ACS Symp. Ser., Vol.196, p195, 1982
38. J. E. Bauerle, J. Phys. Chem. Solids, 30, 2657,1969
39. E. Hafel and H.G. Lintz, Solid State Ionics, 23,235,1987
40. B. A. van Hassel, B. A. Boukamp, and A. J. Burggraaf, Solid State Ionics, 48, 139, 1991
41. J. Mizusaki, H. Tagawa, Y. Miyaki, S. yamauchi and K. Hirano, Solid State Ionics, 53, 126, 1996
42. J. Mizusaki, K. Amano, S. yamauchi and K. Fueki, Solid State Ionics, 22, 313, 1987
43. J.Mizusaki, H.Tagawa and T.Saito, J. Electrochem. Soc., Vol.141, n8, p2120, 1994
44. M.Watanade, H.Uchida, M.Shibata, N.Mochizuki and K.Amikura, ”High Performance Catalyzed-Reaction Layer for Medium Temperature Operating Solid Oxide Fuel Cells", J. Electrochem. Soc., Vol.141, n2, p342, 1994
45. M.J. Saeki, H.Uchida and M.Watanabe, Catal.Lett.,Vol.26,p149,1994
46. Y.Mishima, H.Mitsuyasu, M.Ohtaki and K.Eguchi,J.Electrochem. Soc., Vol.145, n3, p1004, 1988
47. R.N. Blumenthal and B. A. Pinz, J. Appl. Phys. Vol.38, p2376, 1976
48. H. Arai, t. Kunisaki, Y,Shimizu and T. Seiyama, Solid State Ionics, Vol.20, p241, 1986.
49. K. Eguchi, T. Kunisaki and H. Arai, Comm. Am. Ceram. Soc., Vol.69, p282, 1986.
50. R. N. Blumenthal and J. e. Garnier, J. Solid State Chem,. Vol.16, p21, 1976.
51. H. Yahiro, K. Eguchi and H. aria, Solid State Ionics, Vol.21, p37, 1986.
52. H.Yahiro ,Y.Eguchi ,K. Eguchi and H. Arai, J.Appl. Electrochem.,
“Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure”Vol.18, p527,1988.
53. C.G.Vayenas, M.M.Jaksiz, S.Bebelis and S.Neophytides, in “Modern Aspects of Electrochemistry”, No.29,eds. J.O`M.Bockris,B.E.Conway and R.E.White (Plenum,New York,1996) pp.57-202.
54. Castro Luna, A.E.; Becerra, A.M., Reaction Kinetics & Catalysis Letters,”Kinetics of methane steam reforming on a Ni on alumina-titania catalyst”,Vol. 61, Issue: 2, July, 1997, pp. 369-374
55. V.A. Sobyanin, V. D. Belyaev, T. I. Politova, O. A. Mar'ina, “Internal steam reforming of methane over Ni-based electrode in solid oxide fuel cells”, Applied Catalysts (A: General), 133[1], 47, 1995.
56. M. J. Saeki, H. Uchida and M. Shibata, N. Mochizuki and K. Amikura, J. Electrochem. Soc.,141, 342, 1994.
57. 曾林國碩士論文“以氧化釤添加氧化鈰作為固態氧化物甲醇燃料電池陽極材料之研究”, ,清華大學化工系, 1999.
58. E. Perry Murray, T. Tsai, S. A. Barnett, “A direct-methane fuel cell with a ceria-based anode”, Nature, Vol.400, 12, August, 1999.
59. A. O. lsenberg, US Patent No. 4,395,468
60. W. J. Dallard, “1989 Fuel Cell Seminar”, in Nagoya(Japan), 1(1989)
61. B. C. H. Steele, “1989 Fuel Cell Seminar”, in Nagoya(Japan), 77(1989)
62. S. Srilomsah, et al, in Proc. of 1st Int'' l. Sysip. on Solid Oxide Fuel Cells, 129(1989).
63. D. C. Fee et al., Fuel Cell Seminar Abstracts, 40(1986)
64. S. Majumdar, T. Claar and B. Flandermayer, “Stress and Fracture-Behavior of Monolithic Fuel-Cell Tapes”, J Am. Ceram. Soc., 69, 628(1986)
65. M. S. S. Hsil, W. E. Morrow and J. B. Goodenough, in “Proceedings of the 10th intersociety Eergy Conversion Engineering Conference”, 555(1975)
66. P. A. Lessing, L.W. Tai, and K. A. Klenmi, in “Proc. of 1st Int''l. Symp. on Solid Oxide Fuel Cells”, 337(1989)
67. B. C. H. Steele, C.A. Leach, R.A. Rudkin, N. Khan and M.H. Huang, 1990 Fuel Cell Seminar in Arizona(USA) , 123(1990)
68. 萬其超編著,第四章 不可逆電化學系統,電化學,台灣商務印書館 發行,pp. 64-66.
69. K. Mori, Hee Y. Lee, and John B. Goodenough, “Sr- and Ni- doped LaCoO3 and LaFeO3 perovskite: new cathode materials for solid-oxide fuel cells”, J. Electrochem. Soc., 145, 3220 (1998)
70. R.J. Aaberg, R. Tunold, R. Odegard, S. Tjelle, in:U. Stimming, S.C. Singhal, H. Tagawa, W. Lehnert (Eds.), Solid Oxide Fuel Cells V, Electrochemical Proceedings, Vol. 97-18, 557(1995)
71. M. Watanabe, H. Uchida, M. Yoshida, “Effect of Ionic Conductivity of Zirconia Electrolytes on the Polarization Behavior of Ceria-Based Anodes in Solid Oxide Fuel Cells”, J. Electrochem. Soc. Vol. 144, No. 5, May, 1739(1997)
72. S. Ohara, R. Maric, X. Zhang, K. Mukai, T. Fukui, H. Yoshida, T. Inagaki, K. Miura, ”High performance electrodes for reduced temperatire solid oxide fuel cells with doped lanthanum gallate electrolyte I. Ni-SDC cermet anode”, J. Power Sources 86(2000) 455-458

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊