跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/11 00:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李書豪
研究生(外文):Shu-Hao Lee
論文名稱:具環境應答性之網狀互穿型生醫水膠之合成及其藥物制放之應用
論文名稱(外文):Synthesis and Characterization of Enviornmental Responsiblity Hydrogels Based on Interpenetrating Polymer Networks
指導教授:薛敬和薛敬和引用關係
指導教授(外文):Ging-Ho Hsiue
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:133
中文關鍵詞:環境應答性生醫水膠網狀互穿型藥物制放
外文關鍵詞:Enviornmental Responsiblity HydrogelsInterpenetrating Polymer NetworksDrug Drlivery System
相關次數:
  • 被引用被引用:7
  • 點閱點閱:387
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究以polyoxazoline、poly (acrylic acid)及polylactide 三種具良好生物適應性之高分子為主要材料,將其製備成具環境應答性之網狀互穿型(interpenetrating polymer nwtwork)生醫水膠,其能在高pH如小腸之中性pH下膨潤釋放藥物,低pH如胃之pH下收縮保護藥物,將其對環境應答產生之特性應用於藥物傳釋上,能有效的控制藥物之釋放,達到治療之效果。
在本研究中,分別製備POx/PAA IPN/SIPN、PEG-b-PLA /PAA SIPN兩種水膠,其對外在環境之刺激變化特別是pH之改變所產生之應答效果非常明顯且快速,屬於一種快速應答型水膠。由膨潤測試之結果顯示無論是POx/PAA或PEG-b-PLA /PAA 水膠,皆能在人體之生理環境下(pH 7-7.4、溫度37℃)膨潤,低溫低pH下收縮,形成一種可逆之膨潤收縮現象。由藥物制放實驗結果,證實本研究所設計之水膠皆能有效的控制釋放藥物,不論是小分子之Theophylline或是巨分子之蛋白質藥物(bovine serum albumin,BSA),且能形成一種智慧型”On-Off”之藥物制放機制。藉由細胞毒性之實驗,可以評估水膠之生物適應性,從實驗結果得知POx/PAA和PEG-b-PLA /PAA水膠其細胞之存活率高達80﹪以上具有良好之生物適應性。除此之外,本研究所製備之PEG-b- PLA/PAA水膠還具有分解之特性,能在生理環境下分解成小分子乳酸、聚丙烯酸被人體吸收代謝。藉由體外分解實驗,證實能藉由水解過程而分解代謝,且於一個月內完全分解。
由研究之結果,證實所合成之POx/PAA IPN/SIPN、PEG-b-PLA /PAA SIPN 能對環境產生應答效果且能有效地控制藥物之釋放,作為良好之口服藥物載體,特別是能應用於腸胃道之藥物
The objective of our research is to prepare environmental responsibility bio-hydrogel with good biocompatibility based on interpenetrating polymer networks constructed with polyoxazoline、poly(acrylic acid) and polylactide. The prepared hydrogel swell to release the drug at high pH such as the neutral pH of intestine, and shrink to protect the drug at low pH such as the pH of stomach. The characterization of swelling dependence on environmental responsibility can be applied in drug delivery systems (DDS), and effectively controlled release drug to reach the purpose of therapy.
In our study, POx/PAA IPN and PEG-b-PLA/PAA SIPN are synthesized, respectively. The response of these prepared hydrogel by environmental stimuli especially in pH stimuli is obvious and fast. Hence, these prepared hydrogel belong to fast responsibility hydrogel. According to the result of swelling test, no mater POx/PAA IPN or PEG-b-PLA /PAA SIPN swell at physiology environment (pH 7-7.4, 37℃) and shrink at low temperature/pH, which form reversibly swelling/shrinking. According to the confirmation of drug controlled release experiment, these prepared hydrogel can effectively controlled release drug, no mater small molecule drug like theophylline or large molecule drug like bovine serum albumin (BSA) can be released from that, and form the intelligential “On-Off “ drug release profile. The biocompatibility of these hydrogel is evaluated by in vitro cytotoxicity test. According to the result of cytotoxicity test, the survival ratio of cultured cell can reach above 80%. In addition PEG-b-PLA/PAA SIPN have the characterization of degradable, which degrade upon hydrolysis of the polylactide regions into PEG、the lactic acid and PAA at physiology environment in one month .
目錄
英文摘要 …………………………………………………………I
中文摘要 …………………………………………………………II
目錄 …………………………………………………………III
圖目錄 …………………………………………………………VII
表目錄 …………………………………………………………XVI
Scheme 目錄………………………………………………………XVII
第一章 序論.……………………………………………………1
1-1研究背景與目的……………………………………1
1-2實驗內容簡介………………………………………2
第二章 文獻回顧……………………………………………… 6
2-1環境應答型水膠的介紹……………………………6
2-1-1水膠的定義及類型………………………………6
2-1-2溫度應答型水膠…………………………………19
2-1-3 pH應答型水膠…………… ……………………12
2-1-4葡萄糖應答型水膠………………………………17
2-1-5電流應答型水膠…………………………………21
2-1-6光應答型水膠……………………………………23
2-2 生物分解性水膠………………………………… 25
2-3 水膠在藥物傳遞的應用………………………… 27
2-4 高分子網狀互穿結構…………………………… 31
2-5 藥物制放………………………………………… 33
2-5-1藥物傳釋系統……………………………………34
2-5-2藥物動力學………………………………………38
第三章 實驗部分……………………………………………… 40
3-1實驗藥品與實驗儀器………………………………40
3-1-1實驗藥品…………………………………………40
3-1-2 實驗儀器……………………………………… 41
3-2 合成部分………………………………………… 44
3-2-1 藥品純化……………………………………… 44
3-2-2 合成步驟(Part I)…………………………… 44
3-2-3 合成步驟(Part II)……………………………48
3-3 結構鑑定………………………………………… 53
3-4 水膠平衡膨潤率測定…………………………… 54
3-5 毒性測試………………………………………… 55
3-5-1 藥品配置……………………………………… 55
3-5-2 毒性測試實驗步驟…………………………… 56
3-6 藥物之制放……………………………………… 56
3-7 分解實驗………………………………………… 57
第四章 結果與討論………….…...………………………… 59
第一部份 POx/PAA IPN and SIPN
4-1 結構鑑定………………………………………… 59
4-1-1 1H-NMR核磁共振儀分析結果………………… 59
4-1-2 紅外線光譜儀(FT-IR)分析的結果……………62
4-1-3 分子量(GPC)的分析結果………………………62
4-1-4 DSC分析結果……………………………………63
4-1-5 元素分析(EA)分析結果……………………… 69
4-2 水膠膨潤的結果與因素探討…………………… 69
4-2-1 溫度和pH對膨潤率的影響…………………… 69
4-2-2 pH值可逆膨潤性質探討……………………… 71
4-2-3 溫度可逆膨潤性質探討……………………… 72
4-3 藥物之控制釋放………………………………… 75
4-4 細胞毒性測試…………………………………… 81
第二部分PEG-b-PLA macromer / PAA SIPN
4-6 結構鑑定………………………………………… 84
4-6-11H-NMR核磁共振儀分析結果……………………84
4-6-2 紅外線光譜儀(FT-IR)分析的結果……………90
4-6-3 分子量(GPC)之測試……………………………96
4-6-4 DSC之測試………………………………………96
4-7 水膠膨潤的結果與因素探討…………………… 100
4-7-1溫度和pH對膨潤率的影響………………………100
4-7-2 pH值可逆膨潤性質探討……………………… 101
4-7-3 溫度可逆膨潤性質探討……………………… 101
4-8 藥物之控制釋放………………………………… 105
4-9 細胞毒性測試…………………………………… 112
4-10 分解測試…………………………………………115
第五章 結論…………………………………………………… 124
第六章 參考資料……………………………………………… 128
1. R. Langer. New methods of drug delivery. Science, 249 (1990) p1527.
2. Dong and A. Hoffman. A novel approach for preparation of pH-sensitivity hydrogels for enteric drug delivery. J. Contr. Rel, 15 (1991) p584.
3. H. Bronsted and J. Kopecek. Hydrogels for site-specific oral delivery.: Synthesis and characterization. Biomaterials12 (1991) p58.
4. T. Okano,Y. H. Bae, H. Jacobs and S. W. Kim. Thermally on-off switching polymers for drug permeation and release.J. Contr. Rel.,11 (1990) p255.
5. N. A. Peppas and A. R. Khare. Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv. Drug Deliv. Rev., 11,(1993) p1.
6. R. A. Siegal and B. A.. Firestone. pH dependent equilibrium swelling properties of hydrophilic polyelectrolyte copolymer gels. Macromolecules, 21 (1988) p3254.
7. Y. H. Bae, T. Okano and S. W. Kim. Temperature dependence of swelling of crosslinked poly (N,N-alkyl substituted acrylamide) in water.J.Polymer.Sci.Polym.Phys.,28 (1990) p923.
8. K. Ishihara, M. Kobayashi and I. Shinohara. Control of insuline permeation through a polymer membrane with responsive function of glucose. Makromol. Chem. Rapid Commun, 4 (1982) p327.
9. S. W. Kim, C. M. Pai, K. Makino, L. A. Seminoff, D. L. Holmberg, J. M. Gleeson, D. E. Wilson and E. Mack. Self-regulating glycosylated insulin delivery. J. Contr. Rel., 12 (1990) p325.
10. V. H. Lee. Oral route of peptide and protein drug delivery. Biopharm., 718 (1992) p39.
11. D.A. Tomalia and G.R. Killat, Encyclopedia of Polymer Science and Engineering vol 1, p680, John Wily and Sons, New York (1985)
12. A.S. Sawheney, C.P. Pathak, and J.A. Hubbel, Bioerodible hydrogels based on photopolymerized poly (ethylene glycol)-co-poly (α-hydroxy acid) diacrylate macromer, Macromolecules 26 (1993) p581.
13. Shiaw-Guang Hu and Hsin-Jiant Liu, Structure analysis and degradation behavior in polyethylene glycol/poly (L-Lactide) copolymer, J. Appl Polymer. Sci.51 (1994) p473.
14. Yong Qiu and Kinam Park, Environment-sensitive hydrogels for drug delivery, Adv. Drug Deliv. Rev. 53 (2001) p321
15. L.E. Bromberg, E.S. Ron, Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery, Adv. Drug Deliv. Rev. 31 (1998) p197.
16. L.C. Dong, A.S. Hoffman, Symthesis and application of thermally reversible heterogels for drug delivery, J. Contr. Release 13 (1990) p21.
17. C.Wang, R.J. Stewart, J. Kopecek, Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains, Nature 397(1999)p417.
18. H. Bae, T. Okano, S.W. Kim, “On-off” thermocontrol of solute transport. Part 1. Temperature dependence of swelling of N-isopropylacrylamide networks modified with hydrophobic components in water, Pharm. Res. 8(1991)p531.
19. T. Okano, Y.H. Ban, H. Jacobs,S.W. Kim, Thermally on-off switching polymers for drug permeation and release, J. Contr. Release 11(1990)p255.
20. R. Yoshida, K. Sakai,T. Sakurai, Y. H. Bae, S.W. Kim, Surface- modulated skin layers of thermal responsive hydrogel as “On-Off”switches: I. Drug release, J. Biomater. Sci. polym. Ed. 3 (1991) p155.
21. A. Gutowska, J.S. Bark, I.C. Kwon, Y. H. Bae, S.W. Kim, Squeezing hydrogels for controlled oral drug delivery, J. Contr. Release 48(1997)p141.
22. H. Katono, A. Maruyama, K. Sanui, T. Okano, Y. Sakurai, Thermo-responsive swelling and drug release switching of interpenetrating polymer networks composed of poly (acrylamide- co-butylamide) and poly (acrylic acid), J. Contr. Release 16 (1991) p215.
23. B. Jeong, Y.H. Bae, D.S. Lee, S.W. Kim, Biodegradable block copolymers as injectable drug-delivery systems, Nature 388 (1997) p860.
24. B.A. Firestone, R.A. Siegel, Kinetics and mechanisms of water sorption in hydrophobic, ionizable copolymer gels, J. Appl. Polym. Sci 43 (1991) p901.
25. L. Brannon-Peppas, N.A. Peppas, Dynamic and equilibrium swelling behavior of pH-sensitivity hydrogels contain 2-hydroxyethyl methacrylate, Biomaterials 11 (1990) p634.
26. N.A. Peppas, J.Klier, Controlled release by using poly (methacrylic acid-g-ethylene glycol) hydrogels, J. Contr. Release 16 (1991) p203.
27. R.A. Siegel, M. Falamarzian, B.A. Firestone, B.C. Moxley, pH-controlled release from hydrophobic/polyelectrolyte copolymer hydrogels. J. Contr. Release 8 (1988) p179.
28. V.R. Patel, M.M. Amji, Preparation and characterization of freexe-dried chitosan-poly (ethylene oxide) hydrogels for site-specific antibiotics delivery in the stomach, Pharm. Res. 13 (1996) p588.
29. H. Ghandehari, P. Kopeckova, J. Kopeck, In vitro degradation of pH-sensitive hydrogels containing aromatic azo bonds, Biomaterials 18 (1997) p861.
30. E.O. Akala, P. Kopeckova, J. Kopeck, Novel pH-sensitive hydrogels with adjustable swelling kinetics, Biomaterials 19 (1998) p1037.
31. V. Carelli, S. Coltelli, G. Di Colo, E. Nannipieri, M.F.Serafmi, Silicone microspheres for pH-controlled gastrointestinal drug delivery, Int. J. Pharm. 179(1999)p73.
32. K. Aikawa, K. Matsumoto, H. Uda, S. Tanaka, S. Tsuchiya, Hydrogel formation of the pH response polymer polyvinylacetal diethylaminoacetate(AEA), Int. J. Pharm.167(1998)p97.
33. K. Aikawa, N. Matsumoto, H. Uda, S. Tanaka, S. Tsuchiya, Drug release from pH-response polyvinylacetal diethylaminoacetat hydrogel, and application to nasal delivery, Int. J. Pharm.168(1998)p181.
34. P. Markland,Y. Zhang, G.L. Amidon, V.C. Yang, A pH and ionic strength-responsive polypeptide hydrogel: synthesis, characterization, and preliminary protein release studies, J. Biomed. Mater. Res. 47(1999)p592.
35. C.M. Hassan, F.J.I. Doyle, N.A. Peppas, Dynamic behavior of glucose-responsive poly (methacrylic-g-ethylene glycol) hydrogels, Macromolecules 30 (1997) p6166.
36. M. Brownlee, A.Cerami, A glucose-controlled insulin-delivery system: semisybthetic insulin bound to lectin, Science 206 (1979) p1190.
37. S.W. Kim, H.A. Jacobs, Self-regulated insulin delivery- artificial pancreas, Drug Dev. Ind. Pharm. 20 (1994) p575.
38. A.A. Obaidat, K. Park, Characterization of proteins through glucose-sensitive hydrogel membranes, Biomaterials 18 (1997) p801.
39. T. Miyata, A. Jikihara, K. Nakamae, A.S. Hoffman, Preparation of poly (2-glucosyloxyethyl methacrylate)- concanavalin A complex hydrogel and its glucose-sensitivity, Macromol. Chem. Phys. 197 (1996) p1135.
40. M. J. Taylor, S. Tanna, P.M. Taylor, G. Adams, Delivery of insulin from aqueous and non aqueous reservoirs governed by a glucose sensitive gel membranes, J. Drug Target. 3 (1995) p209.
41. I. Hisamitsu, K.Kataoka, T. Okano, Y. sakurai, Glucose- responsive gel from phenylborate polymer and polyvinyl alcohol: prompt response at physiological pH through the interaction of borate with amino group in the gel, Pharm. Res. 14 (1997) p289.
42. W. H. Beckert, E. Al, Mitogenic activity of the jack bean (Canavalia ensiformis) with rabbit peripheral blood lymphocytes, Int. Arch. Allergy. Appl. Immunol. 30 (1970) p337.
43. J. P. Gong, T. Nitta, Y.Osada, Electro kinetic modeling of the contractile phenomena of polyelectrolyte gels, J. Phys. Chem. 98 (1994) p9583.
44. T. Shiga, Y. Hirose, A. Okada, T. Kurauchi, Electric field-associated deformation of polyelectrolyte gel neal a phase transition point, J. Appl. Poly. Sci. 46 (1992) p635.
45. K. Sawahata, M.Hara, H. Yasunaga, Y. Osada, Electrically controlled drug delivery system using polyrlectrolyte gels, J. Contr. Release 14 (1990) p253.
46. I.C. Kwon, Y.H. Bae, S.W. Kim, Electrically erodible polymer gel for controlled release of drugs, Nature 354 (1991) p291.
47. A. Mamada, T. Tanaka, D. Kungwachakum, M. Irie, Photo induced phase transition of gels, Macromolecules 23 (1990) p1517.
48. A. Suzuki, T. Tanaka, Phase transition in polymer gels induced by visible light, Nature 346 (1990) p345.
49. A. Suzuki, T. Ishii, Y. Maruyama, Optical switching in polymer gels, J. Appl. Phys. 102 (1995) p551.
50. N. Yui, T. Okano, Y. Skurai, Photo-responsive degradation of heterogeneous hydrogels comprising crosslinked hyaluronic and lipid microspheres for temporal drug delivery, J. Contr. Release 26 (1993) p141.
51. K. Park. Enzyme-digestible swelling hydrogels as platforms for long-term oral drug delivery:synthesis and characterization. Biomaterial, 9 (1988) p435.
52. W. S. W. Shalaby and K. Park. Biochemical and mechanical characterization of enzyme-digestible hydrogels. Pharm. Res.7 (1990) p816.
53. J. Kopecek. Development of tailor-made polymeric prodrugs for systematic and oral delivery. J. Bioact. Compat. Polym.,3 (1988) p16.
54. N.A. Pappas, P. Bures, W. Leobandung and H. Ichikawa. Hydrogel in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 50 (2000) p27.
55. S. C. Kim and L. H. Sperling. IPNs around the world science and engineering. John Wily. (1997).
56. T. Okano, N.Yui, M. Yokoyama and R. Yoshida. Advances in polymeric systems for drug delivery, Gorden&Breach Science,1994.
57. S. J. Holland, B. J. Tighe and P. L. Gould. Polymers for biodegradable medical devices.4 hydroxybutyrate valerate copolymer as non-disintegrating matrices for controlled release oral dosage forms. J. Controlled Release, 4 (1986) p155.
58. R. W. Baker, Controlled Release of Biologically Active Agents. John Wiley, New Youk, 1987.
59. C. Underhill and A. Dorfman. The role of hyaluronic acid in intercellular adhesion of cultured mouse cells Exp. Cell Res., 117 (1978) p155.
60. C. B. Underhill and B. P. Toole, Binding of hyaluronate to the surface of cultured cells. J. Cell Biol., 82 (1979) p475.
61. R. L. Goldberg and B. P. Hyaluronate inhibition of cell proliferation Toole. Arth. Rheum. , 30 (1987) p769.
62. D. C. West and S. Kumar. The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity. Exp. Cell Res., 183 (1989) p179.
63. G. A. Peyman and G. W. Koa. Use of crossed-linked hyaluronic acid in the anterior segment. Int. Ophthalmol, 10 (1987) p133.
64. N. A. Peppas. Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Actahelv, 60 (1985) p110.
65. Kinam Park, Waleed S. W. Shalaby and Haseun Park. Biodegradable Hydergel for Drug Delivery, Technomic Publishing Company, 1993)
66. Wade CW and Leonard F, Degradation of poly (methyl 2-cyanoacrylates) .J. Biomed. Mater. Res., 6 (1972) p215.
67. M. Vert and S.M. Li, In vivo degradation of massive poly (alpha- hydroxy acids): validation of in vitro findings. Biomaterials.13 (1992) p594.
68. R.K. Kulkarni, Biodegradable poly (lactic acid) polymers. J.Biomed. Mater. Res., 5 (1971) p169.
69. M. Vert and S.M. Li, Attempts to map the structure and degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J. Biomater. Sci. Polym. Ed. 6 (1994) p639.
70. J. Holland, M. Yasin and B.J. Tighe, Polymers for biodegradable medical devices. V. Hydroxybutyrate-hydroxyvalerate copolymers: effects of polymer processing on hydrolytic degradation. Biomaterials, 11 (1990) p206.
71. B. Eling, S. Gogolewski and A.J. Pennings, Biodegradable materials of poly (L-lactic acid). 1 melt-spun and solution-spun fiber, Polymer, 23 (1982) p1587.
72. D.S.G. Hu and H.J. Liu, Effect of soft segment of degradation kinetics in polyethylene glycol/poly(l-lactide) block copolymer Polymer Bulletin, 30 (1993) p669.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top