跳到主要內容

臺灣博碩士論文加值系統

(44.197.230.180) 您好!臺灣時間:2022/08/20 12:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳美玲
研究生(外文):Mei-Ling Wu
論文名稱:以含有可聚合型界面活性劑之逆微胞溶液製備硫化鎘/硫化鋅核殼之高分子奈米複合材料及其特性檢測
論文名稱(外文):Preparation and Characterization of CdS/ZnS-Polymer Nanocomposites in Reverse Micellar Solution Containing Polymerizable Surfactants
指導教授:呂世源
指導教授(外文):Shin-Yuan Lu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:103
中文關鍵詞:奈米粒子奈米複合材料硫化鎘/硫化鋅 核殼粒子可聚合型界面活性劑逆微胞小角度X光散射
外文關鍵詞:nanoparticlenanocompositeCdS/ZnS core-shellpolymerizable surfactantreverse micelleSAXS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:638
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本研究在水/CVDAC/甲苯之w/o逆微胞 系統中製備CdS及ZnS奈米粒子,並將其均勻分散於高分子基材中。此逆微胞系統使用可聚合型界面活性劑(CVDAC),以Cd(NO3)2‧4H2O及Zn(NO3)2‧6H2O提供鎘及鋅離子,以Na2S‧9H2O提供硫離子,兩者於逆微胞中擴散進行反應生成單一成分之CdS或ZnS奈米粒子、CdS及ZnS混合奈米粒子(mixed nanoparticle)、Zn(x)Cd(1-x)S共沈奈米粒子(coprecipitated nanoparticle)以及CdS/ZnS或ZnS/CdS核殼奈米粒子(core-shell nanoparticle),之後直接進行CVDAC之加熱聚合反應,使半導體奈米粒子均勻分散在PCV高分子基材中,而形成半導體高分子奈米複合材料。
奈米粒子的大小可藉由調整逆微胞溶液系統中的含水量(water ratio, Wo= [H2O+IPA]/[surfactant])及欲反應之離子濃度來控制;當粒子生成濃度為5×10-4M,Wo由0.5增加至2.5,CdS的粒徑由4nm增加至6.2nm,而ZnS隨Wo由1.0增加至3.0其粒徑範圍為4.3nm~6.3nm,吸收光譜隨粒徑減小因量子侷限效應(quantum size confinement effect)而產生藍位移(blue-shift)現象;另外,粒子粒徑亦隨濃度增加而變大。
本實驗以x=[Zn2+]/([Zn2+]+[Cd2+])來控制複合粒子ZnS與CdS之生成比例。比較UV-Vis及PL光譜結果,混合奈米粒子其UV-Vis光譜同時具有CdS及ZnS兩成分特性之吸收, PL光譜之發光強度隨ZnS比例增加而遞減;Zn(x)Cd(1-x)S共沈粒子之UV-Vis光譜隨ZnS比例的增加其吸收起使波長由470nm位移至325nm;由實驗證明,以能隙較大之ZnS半導體材料包覆於能隙較小之CdS上,則CdS內的電洞將不會直接與外界接觸,而會滯留在ZnS與CdS介面,因此,外層披覆的ZnS將會降低非發光性之復合(non-radiative recombination),以提高奈米粒子之發光性質;ZnS/CdS複合粒子在UV-ViS光譜其起始吸收波長(onset wavelength)改變不大,與CdS/ZnS相似,然其放光光譜之強度並無提升。
對於所製備成的半導體奈米粒子,除了以UV-Vis光譜儀及PL光譜儀測其光學性質,同時以所測得之UV-Vis光譜,代入Brus方程式估算粒子大小;另以DLS測量逆微胞粒徑分佈,得到雙群分佈,一為小於10nm的逆微胞粒徑,另一為80∼210nm的胞囊(vesicle)粒徑,並以SEM對照此雙群分佈;以SAXS測量CdS/ZnS(x=0.75)複合粒子之包覆程度及分散情形,並由散射強度之擬合得CdS/ZnS粒子其ZnS包覆於CdS之殼厚度為3.6Å,相當於一層ZnS分子之厚度。對於所製備之奈米高分子複合材料,以SEM(mapping)對Cd元素及Zn做元素成分分析,得CdS及ZnS在PCV高分子基材中分散均勻,且由UV-Vis光譜,奈米粒子並無受高分子之聚合反應而影響。

Abstract
Polymer matrices prevent semiconductor nanoparticles of CdS and ZnS from photooxidation and are benefit to immobilization of nanoparticles. Since the particles size of nanoparticles can be controlled efficiently by using the reverse micellar solution systems, such as water/AOT/isooctane micro- emulsion system, we prepare the semiconductor-polymer nanocomposites in reverse micellar solutions containing polymerizable surfactants.
The particle size can be controlled by adjusting the water ratio (Wo) in the reverse micelles. The particle size of CdS ranges from 4.0nm to 6.2nm when the Wo adjusted from 0.5 to 2.5. The onset of the UV-Vis absorption spectrum is blue-shifted with particle sizes due to the quantum size confinement.
We varied the parameter x (x=[Zn2+]/[Zn2+]+[Cd2+]) to discuss the characteristics of mixed CdS-ZnS, coprecipitated Zn(x)Cd(1-x)S, CdS/ZnS and ZnS/CdS core-shell nanoparticles with UV-Vis and PL spectra. The PL intensity of CdS/ZnS nanoparticles is the greatest among them because ZnS shell can provide a surface passivation for CdS core. Therefore, ZnS removes the non-radiative recombination and the electrons and holes on the surface of CdS will be prevented from undergoing redox processes with absorbed chemical species.
In addition, we employed DLS, SEM and SAXS to measure the particle size which is under 10nm. And by using poly core-shell scattering intensity to fit SAXS data, we obtained the shell thickness of CdS/ZnS(x=0.75) to be 3.6Å.
Also, from the UV-Vis spectrum and SEM composition mapping, we can obtain some information about the resulting nanocomposite. The CdS/ZnS nanoparticle can be maintained and dispersed very well in the PCV matrix, and may find applications in optical devices.

總 目 錄
中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅲ
誌謝……………………………………………………………………Ⅳ
總目錄…………………………………………………………………Ⅴ
表目錄…………………………………………………………………Ⅷ
圖目錄…………………………………………………………………Ⅹ
第一章 緒論……………………………………………………………1
1-1 前言…………………………………………………………1
1-2 奈米粒子……………………………………………………3
1-2.1 奈米粒子的特性及應用……………………………………3
1-3 半導體奈米粒子……………………………………………7
1-3.1 半導體………………………………………………………7
1-3.2 半導體奈米粒子……………………………………………8
1-3.3 硫化鎘與硫化鋅之基本性質與應用………………………10
1-4 半導體之螢光理論…………………………………………11
1-4.1 螢光的成因…………………………………………………11
1-4.2 螢光的能量轉移……………………………………………12
第二章 文獻回顧………………………………………………………13
2-1 奈米粒子的製備方法………………………………………13
2-2 奈米粒子在逆微胞之反應程序……………………………16
2-2.1 界面活性劑…………………………………………………16
2-2.2 微胞與逆微胞………………………………………………16
2-2.3 逆微胞法製備奈米粒子之程序……………………………19
2-3 半導體奈米複合粒子………………………………………21
2-4 半導體/高分子奈米複合材料……………………………23
2-5 研究動機……………………………………………………27
第三章 評估粒子大小的方法……………………………………………28
3-1 動態雷射散射基本原理……………………………………28
3-2 紫外光可見光光譜儀………………………………………31
3-3 小角度x光散射儀……………………………………………32
3-4 估算奈米粒子大小…………………………………………35
第四章 實驗方法…………………………………………………………37
4-1 實驗藥品……………………………………………………37
4-2 實驗設備……………………………………………………39
4-3 實驗流程……………………………………………………41
4-3.1 合成可聚合型界面活性劑(CVDAC)……………………41
4-3.2 在逆微胞溶液系統中製備奈米粒子……………………41
4-3.2.1 製作單一成分之CdS或ZnS奈米粒子…………………41
4-3.2.2 製備硫化鎘及硫化鋅雙成分複合奈米粒子…………42
4-3.3 聚合及製作奈米複合材料………………………………45
4-3.4 廢液處理…………………………………………………46
第五章 結果與討論……………………………………………………47
5-1 合成可聚合型界面活性劑及高分子PCV之聚合…………47
5-2 逆微胞系統中生成硫化鎘或硫化鋅奈米粒子…………54
5-3 硫化鎘奈米粒子之氧化反應………………………………59
5-4 Zn(x)Cd(1-x)S共沈粒子及CdS-ZnS混合粒子之比較……61
5-4.1 硫化鎘及硫化鋅混合粒子………………………………61
5-4.2 Zn(x)Cd(1-x)S共沈粒子…………………………………64
5-5 CdS/ZnS及ZnS/CdS複合奈米粒子…………………………69
5-5.1 UV-Vis及PL檢測…………………………………………70
5-5.1.1 CdS/ZnS核殼複合奈米粒子……………………………70
5-5.1.2 ZnS/CdS核殼複合奈米粒子……………………………74
5-5.2 DLS及SEM檢測奈米粒子粒徑大小…………………………77
5-5.3 小角度X光散射檢測………………………………………82
5-6 奈米複合粒子於高分子基材中之性質………………………91
第六章 結論..……………………………………………………………93
第七章 未來展望…………………………………………………………95
第八章 參考文獻…………………………………………………………96
表 目 錄
表1.1 粒子大小與暴露於粒子表面之原子數之關係………………………3
表1.2 奈米粒子與塊材之熔點及燒結溫度比較……………………………4
表1.3 超微粒子的利用(無機化合物及金屬微粒子)……………………6
表2.1 半導體粒子在基材上製備之方法…………………………………25
表2.2 層狀結構複合材料之製備方法……………………………………26
表3.1 CdS與ZnS之有效質量及介電常數…………………………………35
表4.1 清華大學小角度X光散射儀之特性與量測功能……………………40
表4.2 由不同Wo值製備CdS之條件…………………………………………42
表5.1 Wo值與粒徑關係……………………………………………………56
表5.2 CdS及ZnS電子密度…………………………………………………82
表5.3 粒子粒徑擬合之結果………………………………………………86
表6.1 ZnS-CdS粒子之UV-Vis光譜及PL光譜比較…………………………94
圖 目 錄
圖1.1 光學複合材料之示意圖……………………………………………1
圖1.2 粒徑與磁性關係圖…………………………………………………5
圖1.3 (a)直接遷移,(b)間接遷移…………………………………8
圖1.4 半導體之量子結構示意圖及能階密度函數關係示意圖…………9
圖1.5 分子中螢光與磷光之形成…………………………………………11
圖2.1 奈米粒子製程技術…………………………………………………13
圖2.2 界面活性劑的濃度與表面張力關係及各種類型的微胞…………18
圖2.3 奈米粒子在逆微胞中形成之程序…………………………………19
圖3.1 UV-Vis之反射和散射損失…………………………………………31
圖3.2 粒子對入射光(波向量k)的散射…………………………………32
圖4.3 簡化之製備半導體/高分子複合材料流程圖……………………30
圖4.1 混合粒子、共沈粒子及核殼粒子製備程序示意圖………………44
圖4.2 奈米複合材料製備示意圖…………………………………………45
圖5.1 CVDAC及PCV之結構式………………………………………………47
圖5.2 CVDAC之NMR圖譜……………………………………………………49
圖5.3 CVDAC及PCV之DSC圖………………………………………………50
圖5.4 界面活性劑分子隨溫度排列之示意圖……………………………51
圖5.5 POM圖………………………………………………………………51
圖5.6 晶粒排列示意圖……………………………………………………51
圖5.7 PCV之GPC檢測………………………………………………………53
圖5.8 CdS奈米粒子在逆微胞溶液系統中之UV-Vis光譜………………54
圖5.9 Wo值與粒徑及能隙之關係…………………………………………55
圖5.10 CdS奈米粒子在逆微胞溶液系統中之PL光譜……………………56
圖5.11 ZnS奈米粒子在逆微胞溶液系統中之UV-Vis光譜………………57
圖5.12 不同CdS奈米粒子濃度在逆微胞溶液系統中之UV-Vis光譜……58
圖5.13 CdS奈米粒子在逆微胞溶液中隨時間氧化之UV-Vis光譜………60
圖5.14 CdS與ZnS混合粒子在逆微胞溶液中之UV-Vis光譜……………62
圖5.15 CdS與ZnS混合粒子在逆微胞溶液中之PL光譜…………………63
圖5.16 Zn(x)Cd(1-x)S共沈粒子在逆微胞溶液中之UV-Vis光譜………66
圖5.17 Zn(x)Cd(1-x)S共沈奈米粒子能隙與x關係………………………67
圖5.18 Zn(x)Cd(1-x)S共沈奈米粒子在逆微胞溶液中之PL光譜……68
圖5.19 CdS半導體中硫離子光氧化之示意圖……………………………69
圖5.20 CdS奈米粒子表面能量狀態………………………………………70
圖5.21 ZnS於CdS上之成長方式……………………………………………70
圖5.22 CdS/ZnS核殼奈米粒子在逆微胞溶液中之UV-Vis光譜…………72
圖5.23 CdS/ZnS核殼奈米粒子在逆微胞溶液中之PL光譜………………73
圖5.24 ZnS/CdS核殼奈米粒子在逆微胞溶液中之UV-Vis光譜…………74
圖5.25 ZnS/CdS核殼奈米粒子在逆微胞溶液中之PL光譜………………76
圖5.26 電子電動在核殼粒子中轉移之示意圖…………………………76
圖5.27 DLS量測含有CdS/ZnS粒子之逆微胞粒徑分佈……………………79
圖5.28 DLS量測含有Zn(x)Cd(1-x)S粒子之逆微胞粒徑分佈……………80
圖5.29 奈米粒子在逆微胞溶液中乾燥後之電子顯微鏡圖………………80
圖5.30 小角度X光散射圖…………………………………………………83
圖5.31 小角度X光散射強度之擬合圖……………………………………84
圖5.32 奈米粒子在PCV基材中之小角度X光散射圖譜……………………87
圖5.33 層狀結構高分子之示意圖…………………………………………87
圖5.34 為CdS粒子在不同基材中之UV-Vis光譜…………………………89
圖5.35 奈米粒子在高分子基材中之PL光譜………………………………90
圖5.36 CdS/ZnS核殼-PCV奈米複合材料之元素分佈圖…………………91

八、參考文獻
Alivisatos, A. P. (1996). Perspectives on the physical chemistry of semiconductor nanocrystals. Journal of Physical Chemistry, 100, 13226-13239
Aoyagi, T., Terashima., O., Suzuki, N., Matsui, K., & Nagase Y. (1990). Polymerization of benzalkonium chloride-tyle monomer and application to percutaneous drug absorption enhancer. Journal of Controlled Release, 13, 63-71
Bailar, J. C., Emeléus, H. J., Nyholm, S. R., & Trotman-Dickenson, A. F. (1973). Comprehensive Inorganic Chemistry. Australia: Pergamon Press.
Bányai, L., & Koch, S. W. (1993). Semiconductor quantum dots. Singapore: World Scientific Publishing Company.
Beecroft, L., & Ober, C. K. (1997). Nanocomposite materials for optical applications. Chemistry of Materials, 9, 1302-1317
Berg, J. M., & Claesson, P. M. (1994). Forces between surfaces coated with a polymerizable surfactant before and after polymerization. Journal of Colloid and Interface Science, 163, 289-298
Brus, L. E. (1984). Electron-electron and electron-hole interactions in small semiconductor crystallite: the size dependence of the lowest excited electronic state. Journal of Chemical Physics, 80, 4403-4409
Brus, L. E., & Rossetti, R. (1984). Size effects in the excited electronic states of small colloidal CdS crystallites. Journal of Chemical Physics, 80, 4464-4469
Caseri, W. (2000). Nanocomposites of polymers and metals or semiconductors: Historical bacground and optical properties. Macromolecular Rapid Communications, 21, 705-722
Chang, C. L., & Fogler. H. S. (1997). Controlled formation of silica particles from tetraethyl orthosilicate in nonionic water-in-oil microemulsions. Langmuir, 13, 3295-3307
Dabbousi, B. O., Rodriguez- Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F., & Bawendi, M. G. (1997). (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. Journal of Physical Chemistry B, 101, 9463-9475
Du., Z., Zhang, W., Huang, Y., Ma, G., Zhao, W., & Zhu, Z. (1998). Medium confined effect of the composite semi-conductor nanocluster. Supramolecular Science, 5, 453-455
Feigin, L. A., & Svergun, D. I. (1987). Structure Analysis by Small-Angle X-Ray and Neutron Scattering. New York: Plenum Publishing Corporation.
Fu, D. G., Li, M., Wang, X., Cheng, J. Q., Zhang, Y., Lu, Z. H., & Liu, J. Z. (1998). The CdS nanoparticle with capped surface and its nonlinear optical properties studied by hyper-Payleigh scattering. Supramolecular Science, 5, 495
Gan, L. M., Liu, B., Chew, C. H., Xu, S. J., Chua, S. J., Loy, G. L., & Xu, G. Q. (1997). Enhanced photoluminescence and characterization of Mn-Doped ZnS Nanocrystallites synthesized in microemulsion. Langmuir, 13, 6427-6431
Hässelbarth, A., Eychmüller, A., Eichberger, R., Giersig, M., Mews, A., & Weller, H. (1993). Chemistry and photophysics of mixed CdS/HgS Colloids. Journal of Physical Chemistry, 97, 5333-5340
Han, M. Y., Huang, W., Chew, C. H., & Gan, L. M. (1998). Large nonlinear absorption in coated Ag2S/CdS nanoparticles by Inverse Micreoemulsion. Journal of Physical Chemistry B, 101, 1884-1887
Hirai, T., Shiojiri, S., & Komasawa, I. (1994). Preparation of metal sulfide composite ultrafine particles in reverse micellar systems and their photocatalytic property. Journal of Chemical Engineering of Japan, 27 (5), 590-597
Hirai, T., Sato, H., & Komasawa, I. (1995). Mechanism of formation of composite CdS-ZnS ultrafine particles in reverse micelles. Industrial Engineering Chemical Research, 34, 2493-2498
Hirai, T., & Miyamoto. & Komasawa, I. (1999). Composite nano-CdS- polyurethane transparent film. Journal of Material Chemistry, 9, 1217-1219
Hirai, T., Watanabe, T., & Komasawa, I. (2000a). Preparation of semiconductor nanoparticle-polymer composites by direct reverse micelle polymerization using polymerizable surfactants. Journal of Physical Chemistry B, 104, 8962-8966
Hirai, T., & Komasawa, I. (2000b). Preparation of nano-CdS -polyurethane composites via. in situ polymerization in reverse micellar systems. Journal of Materials Chemistry, 10, 2234-2235
Iilev, V., Prahov, L., Bilyarska, L., Fischer, H., Schulz-Ekloff, G., Wöhrle, D., & Petrov, L. (2000). Oxidation and photooxidation of sulfide and thiosulfate ions catalyzed by transition metal chalcogenides and phthalocyanine complexes. Journal of Molecular Catalysis A, 151, 161-169
Ma, L. J., & Cheng, H. (1996). Synthesis and characterization of mixed CdS- ZnS nanoparticles in reverse micelles. Colloids Surfaces A., 111, 195-202
Lianos, P., & Thomas, J. K. (1986). Cadmium sulfide of small dimensions produced in inverted micelles. Colloids and Surfaces Chemical Physics Letters, 125, 299-302
Liu, B., Xu, G. Q., Gan, L. M., & Chew, C. H. (2001). Photoluminescence and structural characteristics of CdS nanoclusters synthesized by hydrothermal microemulsion. Journal of Applied Physics, 89, 1059-1063
Liu, S. M., Guo, H. Q., Zhang, Z. H., Li, R., Chen, W., & Wang, Z. G. (2000a). Characterization of CdSe and CdSe/CdS core/shell nanoclusters synthesized in aqueous solution. Physica E, 8, 174-178
Liu, S. M., Liu, F. Q., Guo, H. Q., Zhang, Z. H., & Wang, Z. G. (2000b). Surface states induced photoluminescence from Mn2+ doped CdS nanoparticles. Solid State Communications, 115, 615-618
Kortan, A. R., Hull, R., Opila, R. L., Bawendi, M. G., Steigerwald, M. L., Carroll, P. J., & Brus, L. E. (1990). Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media. Journal of American Chemical Society, 112, 1327-1332
Kunieda, H., & Rajagopalan, V. (1996). Formation and structure of reverse vesicles. Surfactant Science Series, 62, 79-103
Qiao, Z., Xie, Y., Xu, J., Zhu, Y., & Qian, Y. (2000). Synthesis od CdS/polyacrylonitrile nanocomposites by γ-irradiation. Materials Research Bulletin, 35, 1355-1360
Okamoto, S., Kanemitsu, Y., Hosokawa, H., Murakoshi, K., &
Yanagida, S. (1997). Photoluminescence from surface- capped CdS nanocrystals by selective excitation. Solid State Communications, 105, 7-11
Pavel, F. M., & Mackay, R. A. (2000). Reverse micellar synthesis of a nanoparticle/polymer composite. Langmuir, 16, 8568-8574
Pileni, M. P., Motte, L., & Petit, C. (1992). Synthesis of cadmium sulfide in situ in reverse micelles: influence of the preparation modes on size, polydispersity, and photochemical reactions. Chemistry of Materials, 4, 338-345
Qi, L., Ma, J., Cheng, H., & Zhao, Z. (1996). Synthesis and characterization of mixed CdS-ZnS nanoparticles in reverse micelles. Colloids and Surfaces A, 111, 195-202
Rajeshwar, K., Tacconi, N. R., & Chenthamarakshan, C. R. (2001). Semiconductor-Based composite materials: Preparation, properties, and performance. Chemistry of Materials, 13, 2765-2782
Ricolleau, C., Audinet, L., Gandais, M., & Gacoin, T. (1998). Epitaxial growth of ZnS on CdS in CdS/ZnS nanostructures. Thin Solid Films, 336, 213-217
Roe, R. J. (2000). Methods of X-Ray and Neutron Scattering in Polymer Science. New York: Oxford University Press.
Rossettl, R., & Brus, L. (1982). Electron-hole recombination emission as a probe of surface chemistry in aqueous CdS colloids. Journal of Physic Chemistry, 86, 4470-4472
Sato, H., Tsubaki, Y., Hirai, T., & Komasawa, I. (1997). Mechanism of Formation of metal sulfide ultrafine particles in reverse micelles using a gas injection method. Industrial Engineering and Chemical Research, 36, 92-100
Shiojiri, S., Hirai, T., & Komasawa, I. (1997). Preparation of cadmium sulfide ultrafine particles surface-modified with thiols in reverse micellar systems and redispersion in non-micellar solvents. Journal of Chemical Engineering of Japan, 30, 86-93
Shiojiri, S., Hirai, T., Komasawa, I. (1998). Quantitative study on thiophenol modification and redispersion property of cadmium sulfide ultrafine particles prepared in reverse micellar systems. Journal of Chemical Engineering of Japan, 31 (1), 142-146
Skoog, D. A., & West, D. M. (1988). Funderamentals of Analytical Chemistry, 5th edition, Chicago: Saunders College Publishing.
Skoog, D. A., Holler, F. J., & Nieman, T. A. (1998). Principles of instrumental analysis, 5th edition, Chicago: Saunders College Publishing.
Tata, M., Banerjee, S., John, V. T., & Waguespack, Y. (1997). Fluorescence quenching of CdS nanocrystallites in AOT water-in-oil microemulsions. Colloids and Surfaces A, 127, 39-46
Vij, D. R., & Singh, N. (1998). Luminescence and Related Properties of Ⅱ-Ⅵ Semiconductor. New York: Nova Science Publishers.
Woggon, U. (1996). Optical properties of semiconductor quantum dots. Berlin: Springer.
Xu, S. J., & Chua, S. J. (1998). Luminescence characteristics of impurities-activated ZnS nanocrystals prepared in mocroemulsion with hydrothermal treatment. Applied Physics Letters, 73, 478-480
Xu, L., Wang, L., Huang, X., Zhu, J., Chen, H., & Chen, K. (2000). Surface passivation and enhanced quantum-size effect and photostability of coated CdSe/CdS nanocrystals. Physica E, 8, 129-133
Yang, P., Lü, M., Xü., D., & Zhou, G. (2001). Synthesis and photoluminescence characteristics of doped ZnS nanoparticles. Applied Physics A, 73, 455-458
Youn, H. C., Baral, S., & Fendler, J. H. (1988). Dihexadecyl phosphate, Vesicle-stabilized and in situ generated mixed CdS and ZnS semiconductor particles. Preparation and utilization for photosensitized charge separation and hydrogen generation. Journal of Physical Chemistry, 92, 6320-6327
Zhou, H. S., Sasahara, H., Honma, I., & Komiyama, H. (1994). Coated semiconductor nanoparticles: the CdS/PbS system’s photoluminescence properties. Chemistry of Materials, 6, 1534-1541
Zhou, H. S., Honma, I., & Komiyama, H. (1993). Coated semiconductor nanoparticles: the CdS/PbS system’s synthesis and properties. Journal of Physical Chemistry, 97, 895-901
王順程、曾文良及曹恆光 (2000),微乳液的簡介,化工 47,53
林滄浪 (2000a),小角X光散射簡介,國立清華大學工科所
林滄浪 (2000b),雷射散射簡介,國立清華大學工科所
莊萬發編撰(1995),”超微粒子理論應用”,復漢出版社
黃淑娟(2002),奈米粉體製程技術,化工資訊月刊,16,34-38
楊正義、陳俊和及陳家俊(2001),半導體奈米材料的製備、鑑定及應
用,科儀新知 6, 27-39
蘇宗燦(2002), Strategy of nanotechnology at ITRI, 奈米光通訊技術策略暨應用論壇
蘇品書編撰(1999),”超微粒子材料技術”,復漢出版社

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top