跳到主要內容

臺灣博碩士論文加值系統

(3.238.252.196) 您好!臺灣時間:2022/08/13 23:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳岱霖
研究生(外文):Dai-Lin Wu
論文名稱:以溶膠-凝膠法製備NovolactypePhenolic/SiO2混成有機/無機奈米複合材料及其性質之研究
論文名稱(外文):The Preparation and Properties of Novolac Type Phenolic/SiO2 Hybrid Organic/Inorganic Nano-Composite Materials by Sol-Gel Method
指導教授:馬振基馬振基引用關係
指導教授(外文):Chen-Chi M.Ma
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:150
中文關鍵詞:酚醛樹脂溶膠凝膠法混成材料奈米複合材料二氧化矽
外文關鍵詞:phenolic resinsol-gelhybridnanocompositesilica
相關次數:
  • 被引用被引用:4
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用溶膠-凝膠法製備Novolac Penolic Resin/SiO2有機/無機混成奈米複合材料,並探討其在物性與化性之間所造成的影響及差別。
本研究利用偶合劑改善有機相與無機相之相分離情形。其中的共價鍵結係由偶合劑和樹脂反應所形成,可由FT-IR鑑定出其結構。由29Si Solid-state NMR所鑑定出矽氧烷所形成之無機網狀交聯的幾何結構主要皆為四取代(Q4)及三取代(T3)居多(其各取代之定義為氧烷基完全水解縮合變成Si-O-Si的結構之數目)。在形態學之研究係利用SEM所觀察到改質過後之系統的無機粒子為100nm以下。經由穿透度的測試,其材料可呈現接近純酚醛樹脂的透明性。
經由TGA、DMA的測試分析,混成複合材料在熱性質方面有明顯的改善,而在機械性質、燃燒性質及透光度測試等方面也都有顯著的不同,其中以改質過後的有機/無機混成奈米複合材料性質為最佳。5wt%的熱重損失溫度由281℃提昇至350℃左右,玻璃轉化溫度由202℃提高到了230℃,表現出優異的熱穩定性。另外,在機械性質方面,其抗折強度測試約提昇了6~30%左右、抗折模數也增加至100%。在L.O.I.的測試中發現此奈米複合材料其L.O.I.值為37,已達耐燃材料標準;在U.L. 94耐燃性質測試結果顯示材料為94V-0的等級,顯示此奈米複合材料具有極佳的耐燃性質。
The preparation of the phenolic resin/silica hybrid organic-inorganic nanocomposite is via sol-gel process. The coupling agent was used to improve the interface between organic and inorganic phase. Effects of nanocomposite structure on the physical and chemical properties were discussed.
The reaction of coupling agent and resin forms covalent bonds. The structure of the covalent bonds was identified by Fourier-transform infrared (FT-IR) spectroscope. The silica network was characterized by solid-state 29Si nuclear magnetic resonance (29Si solid-state NMR). Results revealed that Q4 (tetra-substituted siloxane bond) and T3 (tri-substituted siloxane bond) are the major microstructures. The size of silica particle in the phenolic resin was characterized by scanning electron microscope (SEM). The particle size of inorganic silica in the modified-system is less than 100 nm. The hybrid nanocomposites exhibits excellent transparence.
Thermal properties and mechanical properties show significant difference between the conventional composite and nanocomposite. The modified hybrid composite exhibits promising thermal properties. The 5% weight loss temperature increased from 281℃ to 350℃. The flexural strength increased by 6~30%. The L.O.I. of the nanocomposite can reach 35 and the U.L. value is 94V-0. Hence, the materials possess excellent flame-retardant properties.
第一章、緒論………………………………………………………………1
第二章、理論基礎與文獻回顧……………………………………………4
2-1 酚醛樹脂之製備與特性………....………………………………...4
2-1-1 Novolac type 酚醛樹脂之製備與特性……………………4
2-1-2 Resole type 酚醛樹脂之製備與特性……………………...8
2-1-3 酚醛樹脂之性質……………………..……………..……..10
2-2 溶膠-凝膠法……..……..……..…………………………………..12
2-2-1 溶膠-凝膠技術之簡介…………...………...……………..12
2-2-2 反應機構與影響反應的因素…………………………..…16
2-2-3 溶膠-凝膠技術之歷史發展及應用………………..……..20
2-3 有機/無機混成材料………………………………………………24
2-3-1 有機/無機混成材料之簡介…………..…………………..24
2-3-2 有機/無機混成材料之特性與實例…………………....…28
2-4 熱裂解動力學理論基礎………………………………………….31
2-5 相關研究文獻……………………………………..……………...37
2-4-1 以溶膠-凝膠製備有機/無機混成材料之相關研究……...37
2-4-2 以溶膠-凝膠製備Phenolic Resin/SiO2之有機/無機混成材料之相關研究…………………………………………….50
第三章、研究目的與內容………………………………………………...54
3-1 研究目的…………………………………………………………54
3-2 研究內容…………………………………………………………56
第四章、實驗方法………………………………………………………...58
4-1 實驗藥品………………………………………………………….58
4-2 實驗儀器設備…………………………………………………….60
4-3 實驗流程………………………………………………………….52
4-4 實驗步驟………………………………………………………….63
4-4-1 改質酚醛基材之前趨物製備…………………………….63
4-4-2 酚醛樹脂/二氧化矽之有機/無機混成材料之製備……...64
4-5 測試方法………………………………………………………….69
第五章、研究成果與討論………………………………………………73
5-1 FT-IR結構鑑定…………………………………………………...73
5-2 29Si Solid NMR結構鑑定…………………………………………77
5-3 奈米複合材料微結構之形態學研究…………………………….86
5-4 熱性質分析……………………………………………………….94
5-4-1 TGA………………………………………………………..94
5-4-2 裂解動力學分析………………………………………….99
5-4-3 DMA……………………………………………………...108
5-5 燃燒性質分析…………………………………………………....112
5-5-1 L.O.I.測試………………………………………………...112
5-5-2 U.L.測試………………………………………………….113
5-6 機械性質分析……………………………………………………115
5-6-1 抗折強度與抗折模數測試結果分析…………………...115
5-7透光率測試…………..…………………………………………...120
第六章、研究結論…………………………………………………….…124
第七章、參考文獻…………………………………………………….…127
1. 馬振基編著,高分子複合材料,國立編譯館出版,正中書局印行,上冊,1995.
2. G. L. Wilkes, B. Drier, H. H. Huang, “Ceramers - Hybrid Materials Incorporating Polymeric Oligomeric Species into Inorganic Glasses Utilizing a Sol-Gel Approach”, Abstracts of Papers of the American Chemical Society, 190, p 109,1985.
3. G. Odian, “Principle of Polymerization”, 3rd Edition, Chapter 2, p 123-132, 1991.
4. 村山新一著,洪純仁編譯,「酚醛樹脂」,復文書局,1988.
5. Enio Kumpinsky, “Process Design and Control:A Study on Resol Type Phenol-Formaldehyde Runaway Reactions”, Ind. Eng. Chem. Res., 33, 2, p 285~291, 1994.
6. Marie-Florence Grenier-Loustalot, Stephane Larroque;Philippe Grenier, Jean-Paul Leca and Didier Bedel, “Phenolic Resins:1.Mechanisms and Kinetics of Phenol and of The First Polycondensates Towards Formaldehyde in Solution.”, Polymer., 35, 14, p 3046~3054, 1994.
7. Marie-Florence Grenier-Loustalot, Stephane Larroque and Philippe Grenier, “Phenolic Resins:5.Solid-State Physicochemical Study of Resoles with Variable F/P Ratios”, Polymer., 37, 4, p 639~650, 1996.
8. Marie-Florence Grenier-Loustalot, Stephane Larroque and Philippe Grenier and Didier Bedel, “Phenolic Resins:2. Influence of Catalyst Type on Reaction Mechanisms and Kinetics”, Polymer., 37, 8, p 1363~1369, 1996.
9. C. J. Brinker and G. W. Scherer, “Sol-gel Science, The Physics and Chemistry of Sol-gel Processing”, Published by Academic Press, Inc., p. 2-8, 1990.
10. R. C. Mehrota, R. Bohra, D. P. Gaur, “Metal b-Diketonates and Allied Derivatives”, Academic, London, 1978.
11. H. Schmidt, B. Seiferling, “Chemistry and Applications of Inorganic-Organic Polymers (Organically Modified Silicates)”, Mater. Res. Soc. Symp. Proc., Vol. 73, p. 739, 1986.
12. C. S. Parkhurst, L. A. Doyle, L. A. Silverman, S. Singh, M. P. Anderson, D. McClurg, G. E. Wnek and D. R. Uhlmann, Mater. Res. Soc. Symp. Proc., Vol. 73, p. 769, 1986.
13. K. C. Chen, et. al., “Sol-Gel Processing of Silica”, Journal of Non-Crystalline Solids, Vol. 81, p. 227-237, 1986.
14. R. C. Mehrotra, “Synthesis and Reaction of Metal Alkoxides”, Journal of Non-Crystalline Solids, Vol. 100, p. 1-15, 1988.
15. R. A. Assink, B. D. Kay, “Sol-Gel Kinetics, 1. Functional Group Kinetics”, Journal of Non-Crystalline Solids, Vol. 99, p. 359-370, 1988.
16. C. Sanchez, et. al., “Chemical Modification of Alkoxides Precursors”, Journal of Non-Crystalline Solids, Vol. 100, p. 65-76, 1988.
17. E. J. A. Pope and J. D. Mackenzie, “Sol-Gel Processing of Silica, II. The Role of the Catalyst”, Journal of Non-Crystalline Solids, Vol. 87, p. 185-198, 1986.
18. G. Yi, M. Sayer, “Gol-Gel Processing of Complex Oxide Films”, Ceramic Bulletin, 70,. 7, p. 1173-1179, 1991.
19. S. S. X. Chiaro, J. L. Zotin amd A. C. Faro, “Titania- Alumina Prepared by Sol-Gel Method - Influence of pH and Drying on Textural and Structural-Properties“, Studies in Surface Science and Catalysis, Vol 118, p 633-642, 1998.
20. H. K. Liu and A. Parvizimajidi, “Effect of Particle Additions on Drying Stresses and the Green Density of Sol-Gel- Processed 3-Dimensional Ceramic-Matrix Composites”, Journal of the American Ceramic Society, 81, 7, p 1824-1828,1998.
21. D. C. M. Dutoit, U. Gobel, M. Schneider and A. Baiker, “Titania-Silica Mixed Oxides .5. Effect of Sol-Gel and Drying Conditions on Surface-Properties”, Journal of Catalysis, 164, 2, p 433-439, 1996.
22. S. Wallace and L. L. Hench, “The Processing and Characterization of DCCA Modified Gel-derived Silica”, in “Better Ceramic throuth Chemistry”, MRS, Vol. 32, p. 47-53, 1984.
23. J. Zarychi, et. al., “Synthesis of Glasses from Gel: The Problem of Monolithic Gel”, J. Mater. Sci., 17, p. 3371, 1982.
24. J. J. Ebelmen, Amm., Vol. 57, p. 331, 1846.
25. T. Graham, Journal of Chemistry Society, Vol. 17, p. 318-327, 1864.
26. L. Royleigh, Philos. Mag.,38,738, 1919.
27. W. Geffcken and E. Berger, German Patent, 736411, 1939.
28. M. Vandenoever, T. Peijs, “Continuous-Glass-Fiber- Reinforced Polypropylene Composites - II - Influence of Maleic-Anhydride Modified Polypropylene on Fatigue Behavior”, Composites Part A - Applied Science and Manufacturing, 29,. 3, p. 227-239, 1998.
29. C. B. Hurd, “Theories for the Mechanism of the Setting of Silicic Acid Gels”, Chemistry Review, Vol. 22, p. 403-422, 1938.
30. R. Roy, “Aids in Hydrothermal Experimentation: II. Methods of Making Mixtures for Both Dry and Wet Phase Equilibrium Studies”, J. Am. Ceram. Soc., 39, 4, p. 145-146, 1956.
31. R. Roy, “Gel Route to Homogeneous Glass Preparation”, J. Am. Ceram. Soc., 52, 6, p. 344, 1969.
32. L. Levene and I. M. Thomas, U. S. Patent 3,640,093, 1972.
33. H. Dislich, “New Routes to Multicomponent Oxide Glasses”, Angewandt Chemie, 10, 6, p. 363-370, 1971.
34. B. E. Yoldas, “Alumina Gels that Form Porous Transparent Al2O3”, Journal of Materials Science, Vol. 10, pp. 1856-1860, 1975.
35. B. E. Yoldas, “Preparation of Glasses and Ceramics from Metal-organic Compounds”, J. Mater. Sci., Vol. 12, p. 1203-1208,1977.
36. M. Yamane, A. Shinjii and T. Sakaino, “Preparation of a Gel from Metal Alkoxide and its Properties as a Presursor of Oxide Glass”, J. Mater. Sci., Vol. 13, p. 865-870, 1978.
37. M. Alexandre, P. Dubois,” Polymer-layered silicate nano- composites: preparation, properties and uses of a new class of materials,” Mater. Sci. and Eng., 28, p1-63, 2000.
38. J. E. Mark, ”Ceramic reinforced polymers and polymer-modified ceramics,” Polym. Eng. Sci., 36, p2905-2920, 1996.
39. T. Yamabe,” Recent development of carbon nanotube,” Synthesis Metals, 70, p. 1511-1518, 1995.
40. V. Favier, G. R. Canova, S. C. Shivastava, J. Y. cavaille,” Mechanical percolation in cellulose whiskers nanocomposites,” Polym. Eng. Sci., 37, 1732-1739, 1997
41. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito,” One-Pot Synthesis of Nylon6-Clay Hybrid,” J. Polym. Sci Part A, 31, p. 1755-1758, 1993.
42. 廖建勛, ”奈米材料的發展動態”, 化工資訊, 20, 1998.2.
43. T. Saegusa, J. Macromol. Sci, Chem. A, 28, 817, 1991.
44. T. Saegusa, Pure Appl. Chem., ”Organic-Inorganic Polymers Hybrids.”, 67, 1965, 1995.
45. J. Wen, G. L. ilkes, J. Sol-gel Sci. Technol., “Abrasion Resistant Inorganic/Inorganic Coating Materials Prepared by the Sol-gel Method”, 5, 2, p. 115, 1995.
46. R. Kasemann, H. Schmidt, “Coatings for Mechanical and Chemical Protection Based on Organic-inorganic Sol-gel Nanocomposites”, Nw J. Chem., 18, 10, p. 1117, 1994.
47. C. J. Wang, Y. Pang, P. N. Prasad, “Poly(p-phenylene vinylene)-silica Composite: A Novel Sol-gel Processed Non-linear Optical Materials for Optical Waveguides”, Polym., 32, 4, p. 605, 1991.
48. P. N. Prasad, F. V. Bright, U. Narang, R. Wang, R. A. Dunbar, PMSE Prepr., Vol. 70, p. 349, 1994.
49. H. Schmidt, H. Scholze, G. Tunker, “Hot Melt Adhesives for Glass Containers by the Sol-gel Process”, J. Non-crystalline Solids, Vol. 80, p. 557, 1986.
50. J. E. Mark, S. J. Pan, “Reinforcement of Polydimethylsiloxane Network by in-situ Precipitation of Silica: A New Method for Preparation of Filled Elastomers”, Macromol. Chem. Rapid Commun., 3, 10, p. 681, 1982.
51. A. Usuki, Y. Kujima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, “Synthesis of Nylon 6-Clay Hybrid”, J. Mater. Res., 8, 5, p. 1179, 1993
52. J. E. Mark, “Generate Reinforcing Particles in Place”, Chemtech, 19, 4, p. 230, 1989.
53. T. J. Saegusa, Macromol. Sci. Chem., Vol. A28, p. 817, 1991.
54. R. Zusman, C. Rottman, M. Ottolenghi, D. Avnir, “Doped Sol-gel Glasses as Chemical Sensors”, J. Non-crystalline Solids, 122, 1, p. 107, 1990.
55. B. C. Dave, B. Dunn, J. S. Valentine, J. I. Zink, “Sol-gel Encapsulation Methods for Biosensors”, Anal. Chem., 66, 22, p. 1120A, 1994.
56. J. D. Mackenzie, Q. Huang, T. Iwamoto, “Mechanical Properties of Ormosils”, J. Sol-gel Sci. Tech., 7, 3, p. 151, 1996.
57. T. Iwamoto, J. D. Mackenzie, “Hard Ormosils Prepared with Ultrasonic Irradiation”, J. Sol-gel Sci. Tech., 4, 2, p. 141, 1995.
58. B. D. Mac Craith, et. al., “Optical Chemical Sensors Based on Sol-gel Materials: Recent Advances and Critical Issues”, J. Sol-gel Sci. Tech., Vol. 8, p. 1053, 1997.
59. M. Piz, H. Romich, “Sol-gel Derived Coating for Outdoor Bronze Conservation”, J. Sol-gel Sci. Tech., Vol. 8, p. 1071, 1997.
60. F. Babonneau, C. Toutou, S. Gaveriaux, “17O NMR Investigation of Chemical Homogeneity in Hybrid Systems”, J. Sol-gel Sci. Tech., Vol. 8, p. 553, 1997.
61. L. Delattre, M. Roy, F. Babonneau, “Design of Homogeneous Hybrid Materials through a Careful Control of the Syntheic Procedure”, J. Sol-gel Sci. Tech., Vol. 8, p. 567, 1997.
62. G. L. Wilkes, B. Orler and H. Huang, Polym. Bull., “Ceramers:Hybrid Materials Incorporating Polymeric/Oligomeric Species with Inorganic Glasses by a Sol-Gel Process.”, 14, p. 557, 1985.
63. J. D. Mackenzie, Y. J. Chung and Y. Hu, J. Non-Cryst. Soilds., “Rubbery Ormosils and Their Applications.”, 147, p. 271, 1992.
64. T. Saegusa, J. Macromol. Sci.,Chem. A, 28,817, 1991.
65. M. W. Ellsworth and B. M. Novak, J. Am. Chem. Soc., “Mutually Interpenetrating Inorganic-Organic Networks. New Routes into Nonshrinking Sol-Gel Composite Materials.”, 113, p. 2756, 1991.
66. F. Surivet, T. M. Lam, J. P. Pascault and C. Mai, “Organic Inorganic Hybrid Materials .2. Compared Structure of Polydimethylsiloxane and Hydrogenated Polybutadiene Based Ceramers”, Macromolecules, 25, 21, p. 5742-5751, 1992.
67. Y. Wei, D. Yang and L. Tang, J. Mater. Res., “Synthesis, Characterization, and Properties of New Polystyrene-SiO2 Hybrid Sol-Gel Materials.”, 8, p. 1143, 1993.
68. S. Wang, Z. Ahmad, and J. E. Mark, Polym. Bull., “A Polyamide-silica Composite Prepared by the Sol-Gel Process.”, 31, p. 323, 1993.
69. L. Mascia and A. Kioul, “Polyimide-Silica Hybrid Materials by Sol-Gel Processing”, J. Mater. Sci. Letters, 13, p. 641-643, 1994.
70. S. Wang, Z. Ahmad and J. E. Mark, “Preparation and Properties of High-Clearity Polyamide-Silica Hybrid Materials”, Macromol. Rep., Vol. A31, p. 411, 1994.
71. Y. Wei and W. Wei, “Hybrid Organic-Inorganic composites”, Am. Chem. Soc., 25, 1995.
72. D. Tian, Ph. Dubois and R. Jerome, “A New Poly(- caprolactone) Containing Hybrid Ceramer Prepared by the Sol-Gel Process”, Polym., 37, 17, p. 3983-3987,1996.
73. Z. Ahmad, M. I. Sarwar, and J. E. Mark, J. Appl. Polym. Sci., “Dynamic-Mechanical Thermal Analysis of Aramid-Silica Hybrid Composites Prepared in a Sol-Gel Process.”, 63, p. 1345, 1997.
74. Z. H. Huang and K. Y. Qiu, Polymer, “The Effects of Interactions on the Properties of Acrylic Polymers/Silica Hybrid Materials Prepared by the In Situ Sol-Gel Process.”, 38, p. 521, 1997.
75. K. Haraguchi, Y. Usami and Y. Ono, “The Preparation and Characterization of Hybrid Materials Composed of Phenolic Resin and Silica”, J. Mater. Sci., Vol. 33, p. 3337-3344,1998.
76. W. Chen, H. Feng, D. He, and C. Ye, J. Appl. Polym. Sci., ”High Resolution Solid-State NMR and DSC Study of Poly(ethylene glycol)-Silicate Hybrid Materials Via Sol-Gel Process.”, 67, p. 139, 1998.
77. K. D. Suh, J. H. Park and S. J. Choi, J. M. S. Pure Appl. Chem., “Composite of SiO2 and Hydrogel Having Microphase Separated Structure : Physical Properties Dependence on pH.”, A(35), 1695, 1998.
78. Y. Yang, Z. Zhu and Z. Qi, “Studies on soluble polyimide/silica nanocomposites via sol-gel process (1). Studies on sol-gel transition and reaction mechanism”, J. Func. Mat., 30, 1, p78~81, 1999.
79. K. H. Wu, T. C. Chang, Y. T. Wang and Y. S. Chiu, “Organic-inorganic hybrid materials. I. Characterization and degradation of poly(imide-silica) hybrids”, J. Polym. Sci., Part A:Polym. Chem., 37, 13, p2275~2284, 1999.
80. J. Liu, Y Gao, F. Wang and M. Wu, “Preparation and characteristics of nonflammable polyimide materials”, J. A. Polym. Sci., 75, 3, p384~389, 2000.
81. T. Xie, C. Zhou, S. Feng and X. Wang, “Study of poly(methyl methacrylate-maleic anhydride)/silica hybrid materials”, J. A. Polym. Sci., 75, 3, p379~383, 2000.
82. W. C. Chen, S. J. Lee, “Synthesis and characterization of poly(methyl methacrylate)-silica hybrid optical thin films”, Polym. J., 32, 1, p67~72, 2000.
83. G. H. Hsiue, W. J. Kuo, Y. P. Huang and R. J. Jeng, “Microstructural and morphological characteristics of PS-SiO2 nanocomposites”, Polym., 41, 8, p2813~2825, 2000.
84. Jae Whan Cho and Kyung Sul, “Characterization and properties of hybrid composites prepared from poly(vinylidene fluoride— tetrafluoroethlene) and SiO2”, Polym.,.42, 2, p727~736, 2001.
85. K. H. Wu, T. C. Chang, J. C. Yang and H. B. Chen, “Organic- inorganic hybrid materials. II. Chain mobility and stability of polysiloxaneimide-silica hybrids”, J. Appl. Polym. Sci., 76, 6, p965-973, 2001.
86. Y. G. Hsu and K. H. Lin, “Preparation and properties of ABS-silica nanocomposites through sol-gel process under the catalyzation of different catalysts”, J. Polym. Research, 8, 1, p69~76, 2001.
87. Y. G. Hsu, L. C. Tu and K. H. Lin, “Hybrid materials derived from modified styrene-butadiene-styrene copolymer (SBS) and silica through the sol-gel process”, J. Polym. Research, 8, 1, p37~47, 2001.
88. S. Wang, S. Adanur and B. Z. Jang, ”Mechanical and thermo- mechanical failure mechanism analysis of fiber/filler reinforced phenolic matrix composites”, Composites Part B, 28B, No. 4, pp. 215-231, 1997.
89. K. Haraguchi, Y. Usami and K. Yamamura, S. Matsumoto, “Morphological Investigation of Hybrid Materials Composed of Phenolic Resin and Silica Prepared by in-Situ Polymerization”, Polym., 39, 25, p.6243-6250, 1998.
90. K. Haraguchi, Y. Usami, Y. Ono, “Preparation and Characterization of Hybrid Materials Composed of Phenolic Resin and Silica”, J. Mater. Sci., 33, 13, p.337-3344, 1998.
91. J. M. Lin, C. C. Ma, F. Y. Wang, H. D. Wu and S. C. Kuang, “Thermal, mechanical, and morphological properties of resin/silica hybrid creamers”, J. Polym. Sci., Part B: Polym. Phy., 38, 13, p1699~1706, 2000.
92. J. M. Lin and C. C. Ma, “Thermal degradation of phenolic resin/silica hybrid creamers.” Polym. Degrada. And Stab., 69, 2, p229~235, 2000.
93. H. D. Wu, C. C. M. Ma and J. M. Lin, “Processability and Properties of Phenoxy Resin Toughened Phenolic Resin Composites”, J. App. Polym. Sci., 63, 7, p 911-917, 1997.
94. S. Wang, S. Adanur and B. Z. Jang, ”Mechanical and thermo -mechanical failure mechanism analysis of fiber/filler reinforced phenolic matrix composites”, Composites Part B, 28B, No. 4, p 215-231, 1997.
95. K. Haraguchi, Y. Usami, K. Yamamura, S. Matsumoto, “Morphological Investigation of Hybrid Materials Composed of Phenolic Resin and Silica Prepared by in-Situ Polymerization”, Polymer, 39, 25, p 6243-6250, 1998.
96. K. Haraguchi, Y. Usami, Y. Ono, “Preparation and Characterization of Hybrid Materials Composed of Phenolic Resin and Silica”, J. Mater. Sci., 33, 13, p 337-3344, 1998.
97. Amanuel, Samuel; Malhotra, Vivak M. “Structural, thermal, and thermomechanical behaviors of phenolic-inorganic hybrid composites.”, Mater. Res. Soc., 2001.
98. 林佳玲、陳玉惠,”Preparation and Properties of Phosphazene and Silica Containing PMMA IPN Materials”, p84-86, 89年6月。
99. T. C. Chang, Y. T. Wang, Y. S. Hong, Y. S. Chiu, Journal of Polymer Science, 38, p 1972-1980, 2000.
100. Homer E. Kissinger, "Reaction Kinetic in Differential Thermal Analysis", Analytical Chemistry, 29, 11, p. 1702-1706, 1957.
101. C. D. Doyle, "Kinetic Analysis of Thermogravimetric Data", Journal of Applied Polymer Science, Vol. V, 15, p. 285-292, 1961.
102. Takeo Ozawa, "A new Method of Analyzing Thermogravi-metric Data", J. Thermal Anal., 38, 11, p. 1881-1886, 1965.
103. Leo Reich, "Activation energy from a Thermogravimetric Trace", Polymer Letters, Vol. 3, p. 231-234, 1965.
104. Joseph H. Flynn and Leo A. Wall, "Initial Kinetic Parameters from Thermogravimetric rate and Conversion Data", Polymer Letters, Vol.5, p. 191-196, 1967.
105. Henry L. Friedman, "Kinetic of Thermal Degradation of Char-Forming Plastics from Thermogravimetry: Application to a Phenolic Plastic", J. Polym. Sci.: Part C, No. 6, p. 183-195, 1966.
106. G. S. Learmonth and D. P. Searle, "Thermal Degradation of Phenolic Resin", J. Appl. Polym. Sci., Vol. 13, p. 437-443, 1969.
107. William M. Bishop and W. J. Minkowcz, "Decomposition Rate of a Phenolic Resin", AIAA Journal, 11, 4, p. 438-443, 1973.
108. H. D. Wu, C. C. M. Ma and J. M. Lin, “Processability and Properties of Phenoxy Resin Toughened Phenolic Resin Composites”, J. App. Polym. Sci., 63, 7, p 911-917, 1997.
109. Y. L. Liu, G. H. Hsiue, C. W. Lan, Y. S. Chiu, “Phosphorus- containing Epoxy for Flame Retardance: IV. Kinetics and Mechanism of Thermal Degradation”, Polym. Degrad. Stab., 56, 3, p. 291, 1997.
110. J. D. Cooney, M. Day, D. M. Wiles, “Thermal Degradation of Poly (ethylene terephthalate): A Kinetic Analysis of Thermogravimetric Data”, J. Appl. Polym. Sci. 28, 9, p. 2887, 1983.
111. J. W. Kim, W. J. Cho, C. S. Ha, “Morphology, crystalline structure, and properties of poly(vinylidene fluoride)/silica hybrid composite.”, J. Polym. Sci. Part B:Polymer Physics, 40, 1 p. 19-30, 2002
112. T. Ogoshi, H. Itoh, K. M. Kim, Y. Chujo, “Synthesis of organic-inorganic polymer hybrids having interpenetrating polymer network structure by formation of ruthenium-bipyridyl complex.”, Macromolecules, 83, 8, p. 1817-1823, 2002
113. S. H. Zhong, C. F. Li, X. F. Xiao, “Preparation and characterization of polyimide-silica hybrid membranes on kieselguhr-mullite supports.”, J. Membr. Sci., 199, 1, p. 53-58, 2002
114. J. M. Lin, C. C. M. Ma, W. C. Chang, ”Carbon/carbon composites derived from phenolic resin/silica hybrid creamers. Part Ι. Oxidation resistance and morphological properties.”, J. Mater. Sci., 36, 17, p. 4259-4266, 2001
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top