跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.251) 您好!臺灣時間:2022/08/17 00:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊慕震
研究生(外文):Mu-Jen Young
論文名稱:金烯觸媒聚合反應與模擬研究
論文名稱(外文):Polymerization and Simulation Study of Metallocene Catalysis
指導教授:馬振基馬振基引用關係
指導教授(外文):Chen-Chi M. Ma
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:215
中文關鍵詞:金烯觸媒動力模式分子模擬
外文關鍵詞:Metallocene CatalystKinetic ModelMolecular Simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要的目的在於透過電腦模擬以及實驗驗證的方式,探討metallocene觸媒設計以及反應進行等階段的特色,並提出實際可行的計算方法與數學模式,使電腦模擬技術在metallocene觸媒聚合反應技術的應用可行性、準確性以及所產生的價值得到有效的證實。
本文研究首先使用計算化學方法進行metallocene觸媒設計,選擇合適的計算化學方法並加以驗證,依照計算的效率與精確度的要求之下,發現半經驗量子力學方法PM3為針對metallocene觸媒計算有效的方法,並對反應中間體的規則與觸媒的活性與結構關係作一計算與歸納;而後進行一新穎觸媒ZrCp[HB(PZ)3]Cl2的設計與計算,以計算化學結果發現此種觸媒在反應進行時表現出與Cp2ZrCl2 metallocene觸媒相同的反應特性,足見其具有進行烯烴聚合反應觸媒的能力。
第二部分則是關於metallocene觸媒聚合反應實驗與修正動力模式的提出,主要針對不同的聚乙烯反應系統提出關於反應動力的修正模式,並以實驗加以驗證;研究結果發現所提出的修正參數可以解決目前聚合反應動力模式所無法解決的問題,包括分子量分布為介於2.0~3.0之間的值,並非理想值的2.0,以及分子量隨時間改變的情形等。
第三部分則為metallocene觸媒聚合反應應用於環狀聚烯烴共聚物的實驗與計算,該模式除計算聚合反應動力外,也包括環狀聚烯烴共聚物的結構與物性的關係。所提出的模式也可以由如溫度、壓力、觸媒濃度、助觸媒比例等聚合反應條成功地件計算出聚合物的產量、分子量、玻璃轉移溫度之間的關係。透過此反應動力模式,可以經由控制反應變數而達到改變聚合物產品等級的效果。
本論文研究顯示,在使用metallocene觸媒進行聚合反應的研究時,適切的使用數學模式與模擬工具不但可以增加結果的合理性與正確性,並檢視出實驗過程出現的誤差而加以修正,同時也可以減少觸媒設計與製程開發所需要的時間與資源,對於提升競爭力有相當的助益。
The major goal of this research is to study the characteristics of the catalysts and polymerization process by experiments and simulations. In order to justify the value and usage of simulation tools in the catalyst design and process simulation of metallocene catalysts, this study also propose a new computational model that focuses on this point.
The first part of this research is to design the structure of metallocene catalyst by computational chemistry. Semi-empirical molecular orbital method PM3 (MNDO parametric method 3) was used for metallocene catalyst modeling owing its computational efficiency and accuracy. This study has made a comparison of geometry and energy computational results between PM3 and higher order methods (ab initio, density functional theory) to evaluate the accuracy of PM3 method in the calculation of metallocene catalysts. After validating the computational method, PM3 method was employed to design the ZrCp[HB(PZ)3]Cl2 polymerization catalyst. Computational results have shown that the reaction process and characteristics of ZrCp[HB(PZ)3]Cl2 were identical to those of Cp2ZrCl2, thus confirms the ethylene polymerization capability of ZrCp[HB(PZ)3]Cl2 catalyst.
The second part of this study is to propose a novel ethylene polymerization kinetic model for metallocene catalyst system and justify with experiments. The proposed G parameter for ethylene polymerization kinetic model has proved that it can solve the problem of the variation of polymer molecular weight and the non-ideal molecular weight distribution during the polymerization reaction, which was unable to represent precisely by conventional polymerization kinetic model.
The final part of this study is the experimental and modeling study of the cyclic olefin copolymer by metallocene catalyst system. This model can calculate the polymerization conditions and is capable to predict the relation between the structure and physical properties of copolymer. The major contribution of this model is to calculate the yields, molecular weight, contents, and glass transition temperature of polymer at different temperatures, pressures, catalyst concentrations, and cocatalyst ratios. Consequently, the polymer properties can be modified by controling the polymerization conditions.
Results show that by employing appropriate mathematical model and simulation tools, which can justify the accuracy of the experimental results and accelerate the development efforts. This may also save time and the resources for designing the catalyst and developing process for metallocene catalyst system.
摘要 II
ABSTRACT IV
目錄 VI
圖目錄 X
表目錄 XV
1. 緒論 1
1-1 前言 1
1-2 研究目的與內容 4
1-2-1 研究目的 4
1-2-2 研究內容 6
1-3 參考文獻 8
2. 理論基礎與文獻回顧 10
2-1 Metallocene觸媒發展 10
2-2 計算化學與觸媒設計 18
2-2-1 計算量子力學方法回顧 18
2-2-2 Metallocene計算化學方分子模擬 34
2-3 Metallocene觸媒聚合反應動力 39
2-3-1 Metallocene觸媒聚合反應動力原理 39
2-3-2 分子量計算 50
2-3-3 反應系統相平衡計算 51
2-3-4 Metallocec觸媒聚合反應模式 56
2-3-5 數值計算方法 62
2-4 參考文獻 63
3. Metallocene計算化學分子設計 74
3-1 計算化學方法選擇 74
3-1-1 問題簡述 74
3-1-2 研究結果與討論 79
3-2 Metallocene觸媒反應暫態中間體的決定 84
3-2-1 問題簡述 84
3-2-2 本研究之結果與討論 87
3-3 ZrCp[HB(PZ)3]Cl2觸媒之乙烯插入反應模擬 91
3-3-1 問題簡述 91
3-3-2 本研究之結果與討論 93
3-4 結論 100
3-5 參考文獻 101
4. 乙烯聚合反應動力研究 104
4-1 聚乙烯溶液反應製程 104
4-1-1 前言 104
4-1-2 實驗方法與過程 105
4-1-3 溶液聚合反應動力模式 110
4-1-4 本研究之結果與討論 117
4-2 聚乙烯之漿液反應製程 130
4-2-1 前言 130
4-2-2 實驗方法與步驟 131
4-2-3 漿液製造聚合之反應動力模式 135
4-2-4 本研究之結果與討論 142
4-3 結論 152
4-4 參考文獻 154
5. 環聚烯烴共聚物反應與動力模式 155
5-1 前言 155
5-2 實驗方法與步驟 157
5-3 環狀聚烯烴共聚物反應動力模式 166
5-4 本研究之結果與討論 170
5-5 結論 186
5-6 參考文獻 187
6. 總結論與展望 189
.附錄、本研究已發表之相關著作一覽表 193
1. G. Fink, R. Mulhaupt, H. H. Brintinger, “Zigler Catalysts: Recent Scientific Innovations and Technological Improvements”, Springer-Verlag, (1995).
2. L. A. M. Rodriguez, J. A. Gabant, J. Polym. Sci. Part C, 4, 125, (1963).
3. G. Natta, P. Pino, G. Mazzanti, U. Giannini, "A Crystallizable Organonetallic Complex Containing Titanium and Aluminum", J. Am. Chem. Soc., 79, 2975, (1957).
4. K. H. Richert, K. R. Meyer, "Zur Kinetik Niderdruckpolymerisation von Athylen mit loslichen Ziegler-Karalysatoren", Makromol. Chem. 169, 163, (1973).
5. W. P. Long, D. S. Breslow, Leibigs. Ann. Chem. 1975, 563, (1975).
6. W. Kaminsky, J. Kropf, H. Sinn, H. J. Vollmer, “Extrem verzerrte Bindungswinkel bei Organozirconiumverbindungen, die gegen Ethylen aktiv sind”, Angew. Chem., 88, 688, (1976).
7. H. Sinn, W. Kaminsky, H. J. Vollmer, R. Woldt, “Lebende Polymere bei Ziegler-Katalysatoren extremer Produktivität”, Angew. Chem., 92, 396, (1980).
8. K.-H. Reichert, “Mechanismus der Olefinpolymerisation mit Übergangsmetall- Katalysator”, Angew. Makromol. Chem., 94, 1, (1981).
9. G. Fink, R. Rottler, “Ethyleninsertion durch lösliche Ziegler-Katalysatoren. Direkter Einblick durch reagierendes Ethylen- 13C2H4 mit Hilfe der 13C-NMR-Spektroskopie”, Angew. Makromol. Chem., 94, 25, (1981).
10. European Patent Application EP-416-815-A2, (1991).
11. E. Schrodinger, “Quantisation as a Problem of Characteristic Values”, Ann. Phisk, 79, 361, (1926).
12. M. Born, J. R. Oppenheime, “Zur Quantentheorie der Molekeln”, Ann. Phisk., 84, 457, (1927).
13. W. J. Hehre, R. F. Stewart, J. A. Pople, “Self-consistent molecular-orbital methods. I. Use of Gaussian expressions of Slater-Type Atomic Orbitals”, J. Chem. Phys. 51:2657-2664, (1969).
14. J. B. Foresman, Æ. Frish, “Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian”, Gaussian Inc., (1993).
15. R. Hoffmann, “An Extended Huckel Theory”, J. Chem. Phys., 39, 1397, (1963).
16. J. A. Pople, D. P. Santry, and G. A. Segal, “Self-consistent molecular-orbital methods. I. Use of Gaussian expressions of Slater-Type Atomic Orbitals”, J. Chem. Phys., 43, S129 (1965).
17. A. D Bacon, M.C. Zerner, “An Intermediate Neglect Of Differential Overlap Theory for Transition Metal Complexes: Fe, Co and Cu Chlorides”, Theoret. Chim. Acta (Berl.) 53, 21-54, (1979).
18. T. A. Halgren, W. N. Lipscomb, “Partial Retention of Diatomic Differential Overlap”,J. Chem. Phys., 58, 1969, (1973).
19. T. A. Halgren, W. N. Lipscomb, J. Am. Chem. Soc., "Speed and Accuracy in Molecular Orbital Calculations. A Comparison of CNDO/2, INDO, PRDDO, STO-3G, and Orher Methods, Including AAMOM, VRDDO, and ESE MO", 100, 6595, (1978).
20. M. J. S. Dewar, M. L. McKee, J. Am. Chem. Soc., " Ground State Molecules. 41. MNDO Results for Molecules Comtaining Boron" ,99, 5231, (1977).
21. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, " AM1: A New General Puroose Quantum Mechanical Molecular Model" , J. Am. Chem. Soc., 107, 3902, (1985).
22. J. J. P. Stewart, “Optimization of Parameters for Semiempirical Methods. I. Method ”, J. Comput. Chem., 10, 209, (1989).
23. W. J. Hehre, J. Yu, P. E. Klunzinger, and L. Lou, “A Brief Guide to Molecular Mechanics and Quantum Chemical Calculations”, Wavefunction Inc., (1998).
24. R. O. Jones and O.Gunnarsson, “The Density Functional Formalism, Iits Aapplication and Prospects”,Revs. Mod. Phys, 61, 689, (1989).
25. H. Kawamura-Kuribayashi, N. Koga, and K. Morouma, “An Abinitio Mo Study on Ethylene and Propylene Insertion into the Ti-CH3 Bond in CH3TiCl2+ as a Model of Homogeneous Olefin Polymerization”, J. Am. Chem. Soc. Vol. 114, 2359-2366, (1992).
26. H. Kawamura-Kuribayashi, N. Koga, and K. Morouma, “An Abinitio Mo and mm Study of Homogeneous Olefin Polymerization with Silylene-Bridged Zirconocene Catalyst and Its Regioselectivity and Stereoselectivity” J. Am. Chem. Soc. 114, 8687, (1992).
27. L. A. Castonuay, and A. K. Rappe, " Ziegler-Natta Catalysis. A Theoretical Stydy of the Isotactic Polymerization of Propylene", J. Am. Chem. Soc. 114, 5832, (1992).
28. T. K. Woo, L. Fan and T. Ziegler, “Ab-Initio Theoretical-Study on Ethylene Polymerization with Homogeneous Silylene-Bridged Group-4 Metallocene Catalysts - Ethylene Insertion and Beta-Elimination”, Organometallics, 13, 2252, (1994).
29. H. Weiss, M. Ehrig., and R. Ahlrichs, “Ethylene Insertion in the Homogenous Ziegler-Natta Catalysis - An Ab-Initio Investigation on a Correlated Level”, J. Am. Chem. Soc. 116, 4919-4928, (1994).
30. R. Fusco, and L. Longo, “The Influence of the Growing Polymer-Chain on the Catalytic Complex in Homogenous Ziegler-Zatta Polymerization - Density-Functional Calculations on Model Systems TiCl(2)R(+) and ZrCl(2)R(+)”, Marcomol. Symp., 89, 197-202, (1995).
31. T. Yoshida, N. Koga, and K. Morokuma, “A Density-Functional Study of Ethylene Insertion into the M-CH3 Bond of the Constrained Geometry Catalysts ((SiH2- C5H4-NH)MCH(3))(+) (M=Ti, Zr, Hf) and (SiH2-C5H4-NH)TiCH3”, Organometallics, 14, 746-758, (1995).
32. L. Fan, D. Harrison, T. K. Woo, and T. Ziegler, “A Combined Density-Functional and Molecular Mechanics Study on Olefin Polymerization by Metallocene Catalysts”, Organometallics, 14, 2018-2026, (1995).
33. V. R. Jenson, K. J. Barve, and, M. Ystenes, “Ziegler-Natta Ethylene Insertion Reaction for a 5- Coordinate Titanium Chloride Complex Bridged to an Aluminum-Hydride Cocatalyst”, J. Am. Chem. Soc. 117, 4109-4117, (1995).
34. L. Cavallo, P. Corradini, G. Guerra, and L. Resconi, “Doubly Bridged Ansa-Zirconocenes Based on the Norbornadiene Skeleton - A Quantum-Mechanical and Molecular Mechanics Study”, Organometallics, 15, 2254-2263, (1995).
35. L. Cavallo, and G. Guerra, “A Density-Functional and Molecular Mechanics Study of Beta- Hydrogen Transfer in Homogeneous Ziegler-Natta Catalysis”, Macromolecules, 29, 2729-2737, (1996).
36. V. R. Jensen and K. J. Borve, “An Investigation of the Quantum-Chemical Description of the Ethylenic Double-Bond in Reactions - II - Insertion of Ethylene into a Titanium-Carbon Bond”, J. Comput. Chem., 19, 947, (1998).
37. G. Lanza and I. L. Fragala, “Theoretical Modeling of Constrained Geometry Catalysts Beyond the Naked Cation Approach”, Topic Catalysis, 7, 45, (1999).
38. S. Yao, T. Shoji, Y. Iwamoto, and E. Kamei, “Consideration of an Activity of the Metallocene Catalyst by Using Molecular Mechanics, Molecular-Dynamics and QSAR”, Comput. Theor. Polym. Sci., 9, 41, (1999).
39. L. Ahjopalo, B. Lofgren, K. Hakala, and L. O. Pietila, “Molecular Modeling of Metallocene Catalyzed Copolymerization of Ethylene with Functional Comonomers”, Eur. Polym. J., 35, 1519, (1999).
40. G. Talarico, P. H. M. Budzelaar, and A. W. Gal, “Ethylene Coordination, Insertion, and Chain Transfer at a Cationic Aluminum Center - A Comparative-Study with Ab- Initio Correlated Level and Density-Functional Methods”, J. Comput. Chem., 29, 298, (2000).
41. J. R. Munozescalona, V. Cruz , and J. Martinezsalazar,"Effect of a 2nd Ethylene Molecule on the Insertion of Ethylene in Zirconocene Catalyst Systems - A Qm Semiempirical Study",J. Polym Sci. A. Polym. Chem., 38, 3, 571, (2000).
42. A. Maiti, M. Sierka, J. Andzelm, J. Golab, J. Sauer,"Combined Quantum Mechanics: Interatomic Potential Function Investigation Of Rac-Meso Configurational Stability And Rotational Transition In Zirconocene-Based Ziegler-Natta Catalysts", Journal of Physical Chemistry A, 104, 10932, (2001).
43. “Polymer Plus User’s Guide Volume I”, Aspen Tech., (1998).
44. Reid, R. C., and T. K. Sherwood, “Properties of Gases and Liquids: Their Estimation and Correlation”, 2nd ed., McGraw-Hill New York.
45. P. G. T. Fogg and W. Gerrard “Solubility of gases in liquids: a critical evaluation of gas/liquid systems in theory and practice” J. Wiley, New York, (1991).
46. P. Sarker, and S. K. Gupta, “Simulation of Propylene Polymerization - An Efficient Algorithm”, Polymer, 33, 1477, (1992).
47. S. Nitirahardjo, S. Lee, and J. W. Miller, Jr., “Kinetic Modeling of Polymerization of Butadiene Using Cobalt-Based Ziegler-Natta Catalyst”, J. of App. Poly. Sci., 44, 837, (1992).
48. C. Kipaissides, G., Verros, J. F. MacGregor, “Mathematical-Modeling, Optimization, and Quality-Control of High-Pressure Ethylene Polymerization Reactors”, Rev. Macolmol. Chem. Phys., C33, 437, (1993).
49. M. Sau, and S. K. Gupta, “Modeling of a Semibatch Polypropylene Slurry Reactor”, Polymer, 34, 21, (1993).
50. M. S. Bhagwat, S. S. Bhagwat, and M. M. Sharma, “Mathematical-Modeling of the Slurry Polymerization of Ethylene - Gas-Liquid Mass-Transfer Limitations”, Ind. Eng. Chem. Res., 33, 2322, (1994).
51. P. Sarkar, and S. K. Gutpa, “Modeling of Propylene Polymerization in an Isothermal Slurry Reactor”, Polymer, 32, 16, (1991).
52. J. M. V. Estrada, and A. E. Hamielec, “Modeling of Ethylene Polymerization with Cp2ZrCl2/Mao Catalyst.”, Polymer, 35, 808, (1994).
53. J. B. P. Soares, and A. E. Hamielec, “General Dynamic Mathematical-Modeling of Heterogeneous Ziegler-Natta and Metallocene Catalyzed Copolymerization with Multiple-Site Types and Mass and Heat-Transfer Resistances”, Polymer Reaction Engineering, 3, 261, (1995).
54. J. B. P. Soares, and A. E. Hamielec, “Copolymerization of Olefins in a Series of Continuous Stirred-Tank Slurry-Reactors Using Heterogeneous Ziegler- Natta and Metallocene Catalysts .1. General Dynamic Mathematical-Model”, Polymer Reaction Engineering, 4, 2, 153, (1996).
55. T. F. McKenna, J. Dupuy, and R. Spitz, “Modeling of Transfer Phenomena on Heterogeneous Ziegler Catalysts - Differences Between Theory and Experiment in Olefin Polymerization (an Introduction)”, J. of App. Poly. Sci., 57, 371, (1995).
56. T. F. McKenna,, F. Barbotin, and R. Spitz, “Modeling of Transfer Phenomena on Heterogeneous Ziegler Catalysts .2. Experimental Investigation of Intraparticle Mass-Transfer Resistance During the Polymerization of Ethylene in Slurry”, J. of App. Poly. Sci., 62, 1835, (1996).
57. M. Marques, A. R. Dias, C. Costa, F. Lemo, and F. R. Riberio, “Homogeneous Ziegler-Natta Polymerization - A Kinetic Approach .1. Steady-State Kinetics”, Polymer International, 43, 77, (1997).
58. M. Marques, A. R. Dias, C. Costa, F. Lemo, and F. R. Riberio, “Homogeneous Ziegler-Natta Polymerization - A Kinetic Approach .2. Transient-State Kinetics”, Polymer International, 43, 86, (1997).
59. H. K. Choi, J. H. Kim, Y. S. Ko, and S. I. Woo, “Prediction of the Molecular-Weight of Polyethylene Produced in a Semibatch Slurry Reactor by Computer- Simulation”, Ind. Eng. Chem. Res., 36, 1337, (1997).
60. W. K. A. Shaffer and W. H. Ray, “Polymerization of Olefins Through Heterogeneous Catalysis 18. A Kinetic Explanation for Unusual Effects”, J. Appl. Polym. Sci., 65, 1053, (1997).
61. B. M. Shaw, K. B. McAuley, and D. W. Bacon, “Simulating Joint Chain-Length and Composition Fractions from Semibatch Ethylene Copolymerization Experiments”, Polymer Reaction Engineering, 6, 2, 113, (1998).
62. J. B. P. Soares, D. Beigzadeh, T. A. Duever, A. A. Dasilva,” Mathematical-Modeling and Control of Chemical-Composition Distribution of Ethylene/Alpha-Olefin Copolymers Made with Single and Combined Metallocene Catalysts”, Polymer Reaction Engineering, 8, 3, 241, (2000).
63. M. Embirucu, E. L. Limam, J. C. Pinto, “Continuous Soluble Ziegler-Natta Ethylene Polymerizations in Reactor Trains - I - Mathematical-Modeling”, J. Appl. Polym. Sci., 77, 1574, (2000).
64. S. Chakravarti, W. H. Ray, S. X. Zhang, "Kinetic Study Of Olefin Polymerization With A Supported Metallocene Catalyst. IV. Comparison of Bridged and Unbridged Catalyst in Gas Phase", J. Appl. Polym. Sci., 81, 1451, (2001).
65. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Numerical Recipes”, Numerical Recipes Software, (1995).
1. Mu-Jen Young, Ching Ting, and Chen-Chi M. Ma “Activiation Energy and Transition State Determination of Olefin Insertion Process of Metallocene Catalysts by Sem-Empirical Molecular Orbital Calculation “, Russian Journal of Coordination Chemistry, Vol. 28, No. 1, p27-33, (2002).
2. Mu-Jen Young, Chen-Chi M. Ma, “Polymerization Kinetics and Modeling of Solution PE Process with Metallocene Catalysts”, Journal of Polymer Engineering, (In Press), (2001).
3. Mu-Jen Young, Chen-Chi M. Ma, “Polymerization Kinetics and Modeling of Slurry Ethylene Polymerization Process with Metallocene/MAO Catalysts”, Polymer-Plastics Technology and Engineering, (Accepted), (2001).
4. Mu-Jen Young, Ruey-Fu Shih, Wen-Sheng Chang, and Chen-Chi M. Ma, “Polymerization Kinetics and Modeling of Metallocene Cyclic Olefin Copolymer System”, (Revised), European Polymer Journal, (2001).
5. Mu-Jen Young, Chen-Chi M. Ma, “Molecular Orbital Study On Ethene Insertion Into A Zr-CH3 Bond In ZrCp[HB(PZ)3]CH3+ Catalyst”, (Submitted), Journal of Coordination Chemistry, (2002).
1. 丁晴、華壽崧、王伯萍、楊慕震,”The Study of Metallocene Catalysts on EPDM Polymerization”, 亞洲塑膠技術國際會議研討會,台北, 8, Oct., (1997).
2. 蘇再添; 楊慕震; 丁晴; 華壽崧; 趙玉山,” Metallocene-Based EPDM之聚合反應及及製程開發” 第22屆高分子研討會,新竹,28-29, Jan., (1999).
3. Mu-Jen Young, Sheau-Fang Lee, Bor-Ping Wang, and Chen-Chi M. Ma, “Polymerization Kinetics of Solution PE Process by Metallocene Catalysts”, The 8th APCChE Congress, Seoul, 16-19, (1999).
4. Mu-Jen Young, Ruey-Fu Shih, Wen-Sheng Chang, and Chen-Chi M. Ma, “Polymerization Kinetics and Modeling of Metallocene Cyclic Olefin Copolymer System”, 7th International Workshop on Polymer Reaction Engineering, Hamberg, 8-10, Oct., (2001).
5. Mu-Jen Young, Chen-Chi M. Ma, “Reaction Runaway Prevention for Phenolic Resin Process”, 第24屆高分子研討會,台北,5-6,Jan., (2001).
6. 丁晴、楊慕震、張文聖、徐芳儀、林宜央,”New Catalyst Development for Cyclic Olefin Copolymer(mCOC)”, 海峽兩岸催化學術會議,上海,4, Apr. (2001).
7. Mu-Jen Young, Chen-Chi M. Ma, “Molecular Or bital Study on Ethene Inser tion into a Zr -CH3 Bond in ZrCp[HB(PZ)3]CH3+ Catalyst”, 第25屆高分子研討會,台中,18-19,,Jan, (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top