跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/22 19:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳建一
研究生(外文):Wu Jane-Yii
論文名稱:微生物脫色技術之開發
論文名稱(外文):The technology developments in microbial decolorization of dyes
指導教授:陳國誠陳國誠引用關係
指導教授(外文):Chen Kuo-Cheng
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:201
中文關鍵詞:偶氮染料脫色固定化菌體顆粒固有動力學參數流體化床
外文關鍵詞:azo dyesdecolorizationimmobilized-cell beadsintrinsic kinetic parametersfluidized bed reactor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
偶氮染料為工業上使用最普遍的一種染料,全世界市場的佔有率為60-70%,至少有3000多種類的偶氮染料應用在不同的工業上用途上。雖然,偶氮染料通常不具有劇烈的毒性,但由於環境中具有高色度,故將偶氮染料視為環境污染物。目前,每年約有高達10∼15%的合成染料隨放流水流入環境中,而且藉由傳統的生物處理程序是無法有效去除廢水中的染料。因此,過去二十年來,許多物理-化學方面的脫色技術陸續發展出來,但卻很少真正地應用在工業上,最主要的原因在於成本過於昂貴。因此,能有效去除色度且符合經濟效益的新型生物處理技術愈來愈受重視。本論文之主要研究目的在評估利用流體化床反應器合併固定化菌體顆粒之組合系統進行偶氮染料分解之的可行性,分成五個主要研究主題(第2章-第7章)。
第一個部份主要研究的主題在於評估修飾的聚乙烯醇(PVA)固定化技術應用於紡織染料脫色之可行性(第二章)。實驗結果證實修飾的PVA固定化技術確實可成功應用在連續攪拌反應器中進行染料之脫色,而且PVA菌體顆粒之高強度及具有彈性的性質也顯示其亦可應用於具有高剪應力之反應器中。另外,從電子顯微鏡的菌相觀察中,發現至少有三種具有脫色能力之微生物分布在顆粒的內部及外部,例如,球菌、桿菌及絲狀菌。
第二個部份主要研究的主題是純化分離經過染料馴養的活性污泥(石化廠)及湖泊之底泥(清華大學)中之偶氮染料分解微生物,並同時探討所分離出的偶氮染料分解菌株之染料脫色機制及其影響菌株脫色的環境因子,研究內容共有二章(第三及第四章)。經過篩選分離後,本研究得到數株具有分解偶氮染料之細菌,其中Aeromonas hydrophila 是所有篩選菌株中對所測試之24種染料(azo, anthraquinone, and indigo dyes)具有最佳的脫色能力。研究結果此菌株雖在好氣或攪拌的環境中具有較佳之生長,但是卻必須在缺氧或厭氣環境中才具有脫色的能力,當生長環境中溶氧> 0.45 mg/L 時便有明顯的抑制菌株脫色作用。實驗結果也發現,當生長環境中含有葡萄糖的存在時,Aeromonas hydrophila之脫色能力會被抑制,此乃因為菌株在生長過程中,先將葡萄糖代謝分解產生有機酸,使得培養基中的pH值下降而導致了抑制菌株之生長及脫色能力。另一方面,實驗結果也證實本研究之脫色菌株之脫色程序主要是酵素還原作用以及小部份之非活性菌體細胞之吸附作用。
第三個部份主要研究的主題是偶氮染料在固定化脫色菌顆粒內之質傳問題及分解動力現象的探討(第五章)。實驗結果顯示在可以忽略外部質傳的條件下,固定化菌體顆粒內之PVA高分子濃度及菌體濃度是影響偶氮染料在顆粒內質傳之最重要的因子。此外,本研究亦發展一種方法,從量測的反應速率來求得固定化菌體顆粒固有的(intrinsic)動力學參數,此一方法及觀念可以被應用在分析其他的固定化菌體系統。本研究也估算在不同條件之微觀環境及巨觀環境下之固定化菌體顆粒的有效因子,結果顯示固定化顆粒之內部質傳對偶氮染料之分解是一個很重要的影響因素,唯有當Thiele modulus (Φ) < 0.3 (亦即顆粒粒徑 < 0.475 mm)時,有效因子才會趨近於1,而此條件下固定化菌體顆粒分解偶氮染料之反應是屬於酵素反應限制速率步驟,而顆粒之內部質傳阻力是可以忽略的。
第四個部份主要研究的主題是關於固定化菌體顆粒在液固流體化床反應器內的水力特性(第六章)。將本研究之實驗數據與文獻報告中有關利用堅硬材料之擔體在流體化床之水力特性結果作一比較,證實文獻上利用堅硬顆粒材料擔體之水力特性,例如,拖曳係數-雷諾數、上流速度-孔隙率以及膨脹床指數-雷諾數之相關方程式等均無法適用於本研究所使用之固定化菌體顆粒,因此,本研究建立上述水力特性的新相關式,可描述PVA固定化顆粒在流體化床反應器內之流體行為。此外,在一多顆粒系統實驗中證實修正(相關)因子(f(ε))為下降顆粒雷諾數以及流體化顆粒之阿基米得數的函數,與床孔隙度有很大相關性。本研究推導出一個簡單的關係式,在阿基米得數範圍4,986至40,745之間時,可以很容易預測床孔隙度(0.5-0.9),而此實驗結果或許可以應用在其他類似的包埋菌體之擔體材料在流體化床反應器之水力特性。
本論文最後一個部份主要的研究主題是有關於在流體化床反應器內利用固定化菌體顆粒進行偶氮染料脫色之反應器操作特性及反應器動力模式推導,並同時將固定化菌體顆粒在流體化床反應器中之水力特性(第六章)與顆粒內部之質傳阻力(第五章)考慮在反應器動力模式中(第七章)。實驗結果顯示在固定化菌體顆粒在流體化床反應器內分解偶氮染料達穩定之反應時間會隨床膨脹、反應器內填充之顆粒密度以及水力停留時間增加而減少;而菌體在反應器內之平均停留時間,即使當水力停留時間由3小時增加至24小時,也僅有稍微被影響(1014.1-1014.9 天),顯示以PVA當固定化擔體,即使在水力停留時間變化大時,仍可以將菌體在反應器內平均停留時間之減少衝擊降至最低。此外,在流體化床反應器動力解析方面,證實當膜數(film modulus) < 1時,顆粒之內部質傳效應對偶氮染料分解之影響會遠比顆粒外部質傳阻力(薄膜阻力)來的重要。另一方面,將反應器操作在攪拌良好的條件下進行脫色試驗,當系統達穩定時,藉由比較放流水中偶氮染料濃度與反應器動力模式所估算之染料濃度,證實此反應器動力模式之正確性。而此結果亦顯示本研究推導之反應器動力模式可以應用在設計及模擬利用固定化顆粒為擔體之液固流體化床反應器。
Azo dyes are the largest class of dyes with a world market share of 60-70%. At least 3,000 different varieties of azo dyes are extensively used in industries for various purposes. Although the azo dyes do not generally display acute toxicity, they are regarded as water pollutants because of their high color intensity in the environment. Approximately 10-15% of the amount of synthetic dyes produced annually is discharged with factory aqueous effluents, and most dyes are resistant to degradation by traditional biological processes. In the past two decades, several physical or chemical decolorization techniques have been developed, but few of them are accepted by the industries. Their lack of implementation is due to a high cost. As a viable alternative, a novel biological process has received an increasing interest owing to their cost effectiveness and environmental benignity. The main aim of the research was to determine the feasibility of the combined methods using fluidized bed reactor with immobilized-cell beads in decolorization of azo dye. The description of this study is divided into five sections.
The first section is focused on the evaluation of modified polyvinyl alcohol (PVA) immobilized technique in decolorization of textile dyes (Chapter 2). The results prove that the modified PVA immobilization technique has been successfully applied to the decolorization process in a continuous stirred tank reactor. The elasticity and high mechanical strength of PVA beads was also proven to be adequate for the high shear stresses encountered in the reactor. Microscopic observation revealed that the microbial consortium contained in the gel beads was at least made up of three kinds of bacterial species, i.e., circle-shaped bacteria, rod-shaped bacteria, and filamentous bacteria.
The second section of this research, covered in two chapters (Chapter 3 and Chapter 4), deals with the isolation of the azo-degrading bacteria from the activated sludge of petrochemical plants and the mud of University Lake. The mechanism of dye degradation using the isolated strains and the factors affecting biodegradation of azo dyes were also investigated. Several bacterial strains with the capability of degrading textile dyes were isolated. Aeromonas hydrophila was selected and identified because it exhibited the greatest decolorization ability both in terms of extent and rapidity of decolorization for 24 kinds of azo, anthraquinone, and indigo dyes. Although A. hydrophila displayed good growth in aerobic or agitation culture, color removal was the best in anoxic or anaerobic culture. Dissolved oxygen (DO) concentration exceeding 0.45 mg l-1 inhibited significantly bacterial decolorization. Glucose inhibits bacterial decolorization activity because the consumed glucose was converted to organic acids that might decrease the pH of the culture medium, thus inhibiting the cell growth and decolorization activity. In addition, preliminary results indicated that decolorization proceeded primarily by enzymatic reduction associated with a minor portion of biosorption onto the inactivated microbial cells.
The third section deals with the mass transfer phenomena and the degraded dynamics of azo dyes in the PVA immobilized-isolate beads (Chapter 5). The concentration of polymer and the density of the cell in the gel beads were the most significant influencing factors on dye diffusion at a negligibly external mass-transfer resistance condition. In addition, we have developed a procedure, which permit extraction of the intrinsic kinetic parameters from observed reaction rates. This method and concept may be used to analyze the performance of other immobilized-cell systems. On the other hand, the effectiveness factors of immobilized-cell beads have been calculated for a range of microenvironmental conditions and macroenvironmental conditions. The results showed that intraparticle diffusional resistance has a significant effect on the azo dye biodegradation rate. The calculated effectiveness factor (ηcal) approached unity at Thiele modulus (Φ) < 0.3 (dp < 0.475 mm). The only limitation was believed to be the enzymatic reaction. The internal diffusional limitations were neglected.
The fourth section deals with the hydrodynamic behaviors of PVA immobilized-cell beads in the liquid-solid fluidized bed bioreactor (Chapter 6). Our new experimental results were presented and compared with published results for the drag coefficient-Reynolds number, velocity-voidage, and expansion index-Reynolds number relationships observed during fluidization of rigid particles in a fluidized bed. Predictions made from previous correlations were examined with our new experimental findings, revealing the inadequacy of most of these correlations. Thus, new correlations describing the above-mentioned relationships are suggested. For multiparticle systems, the correction factor, f(ε), was a function of the falling gel bead properties (Reynolds number) as well as the fluidized gel bead properties (Archimedes number), and depended strongly on the bed voidage (ε). A new simple relation was developed to predict easily theεvalue from 0.5 to 0.9 at 4986< Ar < 40745. The experimental results may also be used to analyze the hydrodynamic performance of other various entrapped materials in liquid-solid fluidized bed bioreactor (FBR).
The final section deals with the operational performances and modeling study of the liquid-solid FBR using immobilized-cell beads on decolorization of azo dye. The hydrodynamic characteristics of particles (Chapter 6) and the internal diffusional limitations (Chapter 5) were taken into account (Chapter 7). It was found that azo dye degradation time initially reaching a steady state decreased with an increase in bed expansion, cell bead number density and hydraulic retention time (HRT). The mean cell residence time (θC) on liquid-solid FBR using PVA immobilized-cell beads increased insignificantly from 1014.1 to 1014.9 days as the HRT increased from 3 to 24 h, and thus the impact of conventional reducedθC can be minimized by using the same polymer as support carries. Additionally, the internal mass-transfer resistance rather than the film diffusion resistance played an important role in azo dye utilization in liquid-solid FBR when film modulus (mf) was smaller than 1. On the other hand, the model was validated through the comparisons with the experimental data that the azo dye biodegradation was at a steady state under well-mixed operating conditions. The results also showed that the model was close enough to be used in the design and simulation of liquid-solid FBR operated with immobilized-cell bead system.
CONTENTS
中文摘要………………………………………………………………..I
英文摘要………………………………………………………………IV
Figure contents……………………………………………….. ..IX
Table contents……………………………………………………...XII
1 Microbial Decolorization of Textile Dyes: Introduction………………………………………………………. 1
2 Decolorization of Azo Dye Using PVA-Immobilized Microorganisms………………………………………………… 22
3 Microbial Decolorization of Azo Dyes by Proteus mirabilis……………………………………………. 54
4 Decolorization of Textile Dyes by Newly Isolated bacterial strains………………………………………. 72
5 A Method in Evaluation of Intrinsic Kinetic Parameters on Azo Dye Biodegradation Using PVA-Immobilized Cell Beads……102
6 The Hydrodynamic Characteristics of Immobilized-Cell Beads in A Liquid-Solid Fluidized Bed Bioreactor …………….140
7 An Experimental and Modeling Study of Decolorization of Azo Dye in A Liquid-Solid Fluidized Bed Bioreactor Using Immobilized-Cell Beads………………………………..171
[1] Zollinger H. Color chemistry-synthesis, properties and application of organic dyes and pigment, VCH Publishers, New York, 1987. p. 92-102.
[2] Carliell CM, Barclay SJ, Naidoo N, Buckley CA, Mulholland DA, Senior E. Microbial decolorization of a reactive azo dye under anaerobic conditions. Water SA 1995;21:61-69.
[3] Spadarry JT, Isebelle L, Renganathan V. Hydroxyl radical mediated degradation of azo dyes: evidence for benzene generation. Environ Sci Technol 1994;28:1389-1393.
[4] Chun H, Yizhong W. Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile wastewater. Chemosphere 1999;39:2107-2115.
[5] Vandevivere PC, Bianchi R, Verstraete W. Treatment and reuse of wastewater from the textile wet-processing industry: Review of emerging technologies. J Chem Technol Biotechnol 1998;72:289-302.
[6] Banat IM, Nigam P, Singh D, Marchant R. Microbial decolorization of textile dye-containing effluents: a review. Biores Technol 1996;58: 217-227.
[7] Douch PGC, Blair SSB. The metabolism of foreign compound in the cestode, Monieziz expansa, and the nematode. Ascaris lumbricoides var suum. Xemobiotica 1975;5:279-292.
[8] Martins MAM, Cardoso MH, Queiroz MJ, Ramalho MT, Campos AMO. Biodegradation of azo dyes by the yeast Cardida zeylanoides in batch aerated cultures. Chemosphere 1999;38:2455-2460.
[9] Kwasniewska K. Biodegradation of crystal violet(hexamentyl-p-rosaniline chloride) by oxidative red yeasts. Bull Environ Contam Toxicol 1985;34:323-330.
[10] Heiss GS, Gowan B, Dabbs ER. Cloning of DNA from a Rhodococcus strain conferring the ability to decolorize sulfonated azo dyes. FEMS Micro Biol Lett 1992;99:221-226.
[11] Burke NS, Crawford DL. Use of azo dye ligand chromatography for the partial purification of a novel extracellular peroxidase from Streptomyces viridosporus T7A. Appl Microbiol Biotechnol 1998;49: 523-530.
[12] Idaka E, Ogawa T, Horitsu H, Tomoyeda M. Degradation of azo compounds by Aeromonas hydrophila var. 24B. J Soc Dyers Colour 1978;94:91-94.
[13] Yatome C, Ogawa T, Itoh K, Sugiyama A, Idaka E. Degradation of azo dyes by cell-free rxtract from Aeromonas hydrophila var. 24B. J Soc Dyers Colour 1987;103:395-398.
[14] Yatome C, Ogawa T, Itoh K, Hayashi H, Ogawa T. Microbial reduction of azo dyes by several strains. J Environ Sci Health 1991;A26:471-485.
[15] Horitus H, Takada M, Idaka E, Tomoyeda M, Ogawa T. Degradation of p-aminoazobenzene by Bacillus subtilis. Eur J Appl Microbiol Biotechnol
1977;4:217-224.
[16] Michaels GB, Lewis DL. Microbial transformation rates of azo and triphenylmethane dyes. Environ Toxicol Chem 1986;5:161-166.
[17] Brown JP. Reduction of polymeric azo and nitro dyes by intestinal bacteria. Appl Environ Microbiol 1981;41:1283-1286.
[18] Rafii F, Hall JD, Cerniglia CE. Mutagenicity of azo dyes used in foods, drugs and cosmetics before and after reduction by Clostridium species from the human intestinal tract. Food Chem Toxicol 1997;35:897-901.
[19] Wong PK, Yuen PY. Decolorization and biodegradation of N,N''-dimethyl-p-phenylenediamine by Klebsiella pneumoniae RS-13 and Acetobacter liquefaciens S-1. J Appl Microbiol 1998;85: 79-87.
[20] Wong PK, Yuen PY. Decolorization and biodegradation of Methyl Red by Klebsiella pneumoniae RS-13. Water Res 1996;30:1736-1744.
[21] Zimmermann T, Kulla HG, Leisinger T. Properties of purified Orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur J Biochem 1982;129:197-203.
[22] Sarnaik S, Kanekar P. Biodegradation of methyl violet by Pseudomonas mendocina MCM B-402. Appl Microbiol Biotechnol 1999;52:251-254.
[23] Hu TL. Decolorization of reactive azo dyes by transformation with Pseudomonas luteola. Bioprocess Technol 1994;49:47-51.
[24] Chen KC, Huang WT, Wu JY, Houng JY. Microbial decolorization of azo dyes by Proteus mirabilis. J Industrial Microbiol Biotechnol 1999;23: 686-690.
[25] Yatome C, Ogawa T, Koza D, Idaka E. Biodegradation of azo and triphenylmethane dyes by Pseudomonas pseudomallei 13NA. J Soc Dyers Colour 1981;97:166-169.
[26] Yatome C, Ogawa T, Hishida H, Taguchi T. Degradation of azo by cell-free extracts from Pseudomonas stutzeri. J Soc Dyers Colour
1990;106:280-282.
[27] Ryu BH, Weon YD. Decolorization of azo dyes by Aspergillus sojae B-10. J Microbiol Biotechnol 1992;2:215-219.
[28] Nagarathnamma R, Bajpai P, Baipai PK. Studies on decolourization, degradaton and detoxification of chlorinated lignin compounds in kraft bleaching effluents by Ceriporiopsis subvermispora. Process Biochem
1999;34:939-948.
[29] Kapdan IK, Kargi F, McMullan G, Marchant R. Effect of environmental conditions on biological decolorization of textile dyestuff by C. versicolor. Enzyme Microb Technol 2000;26:381-387.
[30] Miyata N, Mori T, Iwahori K, Fujita M. Microbial decolorization of melanoidin-containing wastewaters:combined used of activated sludge and the fungus Coriolus hirsutus. J Biosci Bioeng 2000;89:145-150.
[31] Sugimori D, Banzawa R, Kurozumi M, Okura I. Removal of disperse dyes by the fungus Cunninghamella polymorpha. J Biosci Bioeng 1999;87: 252-254.
[32] Kim SJ, Shoda M. Decolorization of molasses and a dye by a newly isolated strain of the fungus Geotrichum candidum Dec 1. Biotechnol Bioeng 1999;62:114-119.
[33] Brahimi-Horn MC, Lim KK, Liang SL, Mou DG. Binding of textile azo dyes by Myrothecium verrucaria. J Industrial Microbiol 1992;10:31-36.
[34] Zheng Z, Levin RE, Pinkham JL, Shetty K. Decolorization of polymeric dyes by a novel Penicillium isolate. Process Biochem 1999;34:31-37.
[35] Tatarko M, Bumpus JA. Biodegradation of congo red by Phanerochaete chrysosporium. Water Res 1998;32:1713-1717
[36] Bumpus JA, Brock BJ. Biodegradation of crystal violet by white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 1988;54: 1143-1150.
[37] Schliephake K, Lonergan, GT, Jones CL, Mainwaring DE. Decolorization of a pigment plant effluent by Pycnoprous cinnabarinus in a packed-bed bioreactor. Biotechnol Lett 1993;15:1185-1188.
[38] Heinfling A, Bergbauer M, Szewzyk U. Biodegradation of azo and pthalocyanine dyes by Trametes versicolor and Bjerkandera adusta. Appl Microbiol Biotechnol 1997;48:261-266.
[39] Shin KS, Kim CJ. Decolorisation of artificial dyes by peroxidase from the white-rot fungus, Pleurotus ostreatus. Biotechnol Lett 1998;20:569-572.
[40] Wunch KG, Feibelman T, Bennett JW. Screening for fungi capable of removing benzo[a]pyrene in culture. Appl Microbiol Biotechnol 1997;47:620-624.
[41] Swamy J, Ramsay JA. The evaluation of white rot fungi in the decoloration of textile dyes. Enzyme Microb Technol 1999;24:130-137.
[42] Dilek FB, Taplamacioglu HM, Tarlan E. Colour and AOX removal from pulping effluents by alage. Appl Microbiol Biotechnol 1999;52:585-591.
[43] Knapp JS, Newby PS. The microbiological decolorization of an industrial effluent containing a diazo-linked chromophore. Water Res 1995;29: 1807-1809.
[44] Banat IM, Nigam P, McMullan G, Marchant R. The isolation of thermophilic bacterial cultures capable of textile dyes decolorization. Environ Int 1997;23:547-551.
[45] Nigam P, McMullan G, Banat IM, Marchant R. Deolourisation of effluent from the textile industry by a microbial consortium. Biotechnol Lett 1996;18:117-120.
[46] Oxspring DA, McMullan G, Smyth WF, Marchant R. Deolourisation and metabolism of the reactive textile dye, Remazol Black B, by an immobilized microbial consortium. Biotechnol Lett 1996;18:527-530.
[47] Zissi U, Lyberatos G, Pavlous S. Biodegradation of p-aminoazobenzene by Bacillus subtilis under aerobic conditions. J Ind Microbiol Biotechnol 1997;19:49-55.
[48] Yatome C, Matsufuru H, Taguchi T, Ogawa T. Degradation of 4''-dimethylaminoazobenzene-2-carboxylic acid by Pseudomonas stutzeri. Appl Microbiol Biotechnol 1993;39:778-781.
[49] Dykes GA, Timm RG, von Holy A. Azoreductase activity in bacteria associated with the greening of instant chocolate puddings. Appl Environ Microbiol 1994;60: 3027-3029.
[50] Pierce J. Colour in textile effluents - the origins of the problem. J Soc Dyers Colour 1994;110:131-133.
[51] Roxon JJ, Ryan AJ, Wright SE. Reduction of tartrazine by a Proteus species isolated from rats. Food Cosmet Toxicol 1966;4:419-426.
[52] Wuhrmann K, Mechsner K, Kappeler T. Investigation on rate determining factors in the microbial reduction of azo dyes. Eur J Appl Microbiol Biotechnol 1980;9:325-338.
[53] Glenn JK, Gold MH. Decolorization of several polymeric dyes by the ligninolytic fungi applicable to the biodegradation of xenobiotics. Appl Environ Microbiol 1983;45:1741-1747.
[54] Gold MH, Alic M. Molecular biology of lignin-degrading basidomycete Phanerochaete chrysosporium. Microbiol Rev 1993;57:605-622.
[55] Glenn JK, Akileswaran L, Gold MH. Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 1986;251:688-696.
[56] Barr DP, Aust SD. Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 1994;28:79A-87A.
[57] Edens WA, Goins TQ, Dooley D, Henson JM. Purification and characterization of secreted laccase of Gaeumannomyces graminis var. tritici. Appl Environ Microbiol 1999;65:3071-3074.
[58] Chung KT, Stevens SE, Jr, Cerniglia CE. The reduction of azo dyes by the intestinal microflora. Crit Rev Microbiol 1992;18:175-190.
[59] Tampion J, Tampion MD. Immobilized Cells: Principle and Application. Cambridge University Press, Cambridge, UK, 1987.
[60] Livernoche D, Jurasek L, Desrochers M, Dorica J, Veliky IA. Removal of color from kraft mill wastewaters with cultures of white-rot fungi and with immobilized mycelium of Coriolus versicolor. Biotechnol Bioeng 1983;XXV:2055-2065.
[61] Kudlich M, Bishop PL, Knackmuss HJ, Stolz A. Simultaneous anaerobic and aerobic degradation of the sulfonated azo Mordant Yellow 3 by immobilized cells from a naphthalenesulfonate-degrading mixed culture. Appl Microbiol Biotechnol 1996;46:597-603.
[62] Pallerla S, Chambers RP. Characterization of a Ca-alginate-immobilized Trametes versicolor bioreactor for decolorization and AOX reduction of paper mill effluents. Biores Technol 1997;60:1-8.
[63] Muscat A, Pruse U, Vorlop KD. Stable support materials for the immobilization of viable cells. In Immobilized Cells: Basics and Applications; Wijffels RH, Buitelaar RM, Bucke C, Tramper J. Eds. Elsevier Science Publishers B. V.:Amsterdam, 1996, pp 55-61.
[64] Martinsen A, Skjak-Brak G, Smidsrod O. Alginate as immobilization material:1.Correlation between chemical and physical properties of alginate gel beads. Biotechnol Bioeng 1989;33:79-89.
[65] Delee W, O''Neill C, Hawkes FR, Pinheiro HM. Anaerobic treatment of textile effluents: a review. J Chem Technol Biotechnol 1998;73:323-335.
[66] Panswad T, Luangdilok W. Decolorization of reactive dyes with different molecular structures under different environmental conditions. Water Res 2000;34:4177-4184.
[67] Panswad T, Iamsamer K, Anotai J. Decolorization of azo-reactive dye by polyphosphate- and glycogen-accumulating organisms in an anaerobic-aerobic sequencing batch reactor. Bioresource Technology 2001;76:151-159.
[68] An H, Qian Y, Gu X, Tang WZ. Biological treatment of dye wastewaters using an anaerobic-oxic system. Chemosphere 1996;33:2533-2542.
[69] Zaoyan Y, Ke S, Guangliang S, Fan Y, Jinshan D, Huanian M. Anaerobic-aerobic treatment of a dye wastewater by combination of RBC with activated sludge. Water Sci Tech 1992;26:2093-2096.
[70] Chinwetkitvanich S, Tuntoolvest M, Panswad T. Anaerobic decolorization of reactive dyebath effluents by a two-stage UASB system with tapioca as a co-substrate. Wat Res 2000;34:2223-2232.
[71] Seshadri S, Bishop PL, Agha AM. Anaerobic/aerobic treatment of selected azo dyes in waste water. Waste Manag 1994;14:127-137.
[72] O''Neill C, Hawkes FR, Hawkes DL, Esteves S, and Wilcox SJ. Anaerobic-aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye. Water Res 2000;34:2355-2361.
[73] Kargi F, Eyiisleyen S. Batch biological treatment of synthetic wastewater in a fluidized bed containing wire mesh sponge particles. Enzyme Microb Technol 1995;17:119-123.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top