跳到主要內容

臺灣博碩士論文加值系統

(34.236.192.4) 您好!臺灣時間:2022/08/17 17:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李建良
研究生(外文):Chien-Liang Lee
論文名稱:以反應性微胞為模版來製備貴金屬奈米粒子和其粉體應用於化學鍍製程之研究
論文名稱(外文):Preparation of Noble Metal Nanoparticles by Self-regulation Reduction via Reactive Micelles as Templates and Its Application in Electroless Metal Deposition
指導教授:萬其超萬其超引用關係
指導教授(外文):Chi-Chao Wan
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:205
中文關鍵詞:奈米技術奈米粒子金屬化學鍍超大型積體電路內連線界面活性劑模版
外文關鍵詞:nanotechnologynanoparticlemetalelectroless metal depositionULSIinterconnectionsurfactanttemplate
相關次數:
  • 被引用被引用:2
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
A new method to synthesize noble metal nanoparticles has been developed whereby an alcohol-type surfactant, sodium alkyl sulfate (SCnS, n=8,10,12,14), is used as the reductant, and there is no need for an external reducing agent. In this method, metal ions including Pd, Pt, Ru and Ag are reduced to zero-valence atoms by self-generated long carbon-chain alcohol inside the micellar core and then hydrophilic metal nanoparticles form. By this method, in the Pd case, by changing the carbon chain length of the surfactant, the diameter of the nanoparticles can be controlled. The longer the carbon chain length is, the shorter is the particle diameter. Additionally, a highly ordered 3D “spheres-around-sphere” type nanostructure is found in the Pd nanoparticles/SC10S system. This configuration involved the transformation of the liquid crystal phase of the micelle molecules from micellar to lamellar. In the Pt case, the particle diameter can be controlled between 1 and 3 nm. In the Ru case, the time to form particles is found to be shorter than that to form Pd, Pt or Ag particles and particles diameters are always around 2 nm regardless of the surfactant used. Finally, in the Ag case, by UV-Vis spectrum, the surface plasmon resonance band at about 400 nm accompanying with particle nucleation and growth is found to be continuously intense and shift toward red.
Another important finding is that the nanoparticles which are hydrophilic, hydrophobic or both can be effectively prepared by regulating the reflux time in this method. The transformation in surface property from hydrophilic to hydrophobic results from the formation of ester, which adsorb on the particle’s surface and improves dispersibility in the organic medium.
The feasibility of using this newly synthesized Pd nanoparticles as activator for electroless copper deposition has also been examined. In this study, copper is successfully deposited on a wafer with 0.25 um microtrench after activation with the Pd/Sds solution. In addition, the effects of surrounding functional group and the particle size on the kinetics of electroless copper deposition were studied by electrochemical quartz crystal microgravimetry (EQCM). The performance of Pd nanoparticles was also compared with the traditional Pd/Sn colloid-type activator. Besides, when hydrophilic Pt nanoparticles prepared by this synthesis method are tried to be activators for electroless copper deposition, the particles are found to exhibit excellent activity.
A new method to synthesize noble metal nanoparticles has been developed whereby an alcohol-type surfactant, sodium alkyl sulfate (SCnS, n=8,10,12,14), is used as the reductant, and there is no need for an external reducing agent. In this method, metal ions including Pd, Pt, Ru and Ag are reduced to zero-valence atoms by self-generated long carbon-chain alcohol inside the micellar core and then hydrophilic metal nanoparticles form. By this method, in the Pd case, by changing the carbon chain length of the surfactant, the diameter of the nanoparticles can be controlled. The longer the carbon chain length is, the shorter is the particle diameter. Additionally, a highly ordered 3D “spheres-around-sphere” type nanostructure is found in the Pd nanoparticles/SC10S system. This configuration involved the transformation of the liquid crystal phase of the micelle molecules from micellar to lamellar. In the Pt case, the particle diameter can be controlled between 1 and 3 nm. In the Ru case, the time to form particles is found to be shorter than that to form Pd, Pt or Ag particles and particles diameters are always around 2 nm regardless of the surfactant used. Finally, in the Ag case, by UV-Vis spectrum, the surface plasmon resonance band at about 400 nm accompanying with particle nucleation and growth is found to be continuously intense and shift toward red.
Another important finding is that the nanoparticles which are hydrophilic, hydrophobic or both can be effectively prepared by regulating the reflux time in this method. The transformation in surface property from hydrophilic to hydrophobic results from the formation of ester, which adsorb on the particle’s surface and improves dispersibility in the organic medium.
The feasibility of using this newly synthesized Pd nanoparticles as activator for electroless copper deposition has also been examined. In this study, copper is successfully deposited on a wafer with 0.25 um microtrench after activation with the Pd/Sds solution. In addition, the effects of surrounding functional group and the particle size on the kinetics of electroless copper deposition were studied by electrochemical quartz crystal microgravimetry (EQCM). The performance of Pd nanoparticles was also compared with the traditional Pd/Sn colloid-type activator. Besides, when hydrophilic Pt nanoparticles prepared by this synthesis method are tried to be activators for electroless copper deposition, the particles are found to exhibit excellent activity.
CONTENTS
1.Introduction and Reviews…………………1
1.1 The Development of electroless metal deposition ……...1
1.2 Principle of electroless metal deposition……………......2
1.2.1 Pd/Sn colloids activator………………………………………3
1.3 Kinetics of electroless metal deposition…………………...4
1.3.1 Induction periods………………………………………………..4
1.3.2 Electrochemical quartz crystal microbalance (EQCM)………5
1.4 Relations between electroless metal deposition and metal nanoparticles…6
1.5 The chemical and physical prosperities of metal nanoparticles……..7
1.5.1 The size-dependent property……………………………………7
1.5.2 The especially optical property: surface plasmon resonance....9
1.5.2.1 The spherical metal nanoparticle……………………...10
1.5.2.2 The metal nanorod and nanowire………………………..12
1.5.2.3 The monolayer and multilayer nanostructure…………15
1.5.2.4 The core -shell bimetallic nanostructure……………17
1.6 The synthesis of metal nanoparticles via templates…….19
1.6.1 Hard template…………………………………………………….20
1.6.2 Soft templates (bio-templates)………………………………24
1.6.2.1 Surfactant…………………………………………………..25
1.6.2.2 DNA………………………………………………………..30
1.7 A colorimetric biosensor in metal nanostructure………...32
1.8 Research objective and summary of the research…………..35
2. Preparation of nano-scale noble-metal powder by self-regulated reduction via reactive micelles as templates……108
2.1 Introduction………………………………………………...108
2.2 Synthesis of Pd nanoparticles………………………………109
2.2.1 Experiment……………………………………………………….110
2.2.2 Results and Discussion……………………………………...111
2.2.2.1 Kinetics of the colloidal formation………………..111
2.2.2.2 Morphology and crystalline…………………………….113
2.2.2.3 Effect of the surfactant concentration……………..116
2.2.2.4 Effect of palladium salt ……………………………...118
2.3 Synthesis of Pt nanoparticles……………………………….119
2.4 Synthesis of Ru nanoparticles………………………………122
2.5 Synthesis of Ag nanoparticles………………………………123
3. Preparation of Palladium Nanoclusters with dual Hydrophilic and Hydrophobic Properties by Using Time-dependent and Self-regulated Modification within Reduction Micelles…..157
4. Pd nanoparticles as new activator for electroless copper deposition and the effect of surrounding functional group and particle size on its activity…………………..175
4.1 Introduction…………………………………………….175
4.2 Experiment………………………………………………. 176
4.2.1 Preparation and Properity of Pd nanoparticles……..176
4.2.2 Electrochemical measurement……………………………..178
4.3 Result and discussion…………………………………….. 179
4.4 Conclusion……………………………………………………...184
5. Summary of the Conclusion…………………………….203
Chapter1 Reference
1. H. Akahoshi, M. Kawamoto, T. Itabashi, O. Miura, A. Takahahi, S. Kobayashi, M. Miyazaki, T. Mutoh, M. Wajima and T. Ishimaru, “Fine line circuit manufacturing technology with electroless copper plating” IEEE Trans. Comp., Packag. Manuact.. Technol-part a 18, 127(1995)
2. A. Kuruganti, K. S. Chen and E. E. Kalu, “ Evaluation of a printable catalyst for use in flex-circuit and PCB applications” Plating Surf. Finish., july,60 (2001)
3. H. Meyer, R. J. Nichols, D. Schröer and L. Stamp, “ The use of conducting polymers and colloids in the through hole plating of printed circuit boards”, Electrochimica Acta, 39, 1325 (1994)
4. Y. Shacham-Diamand, V. Dubin and M. Angyal, “Electroless copper deposition for ULSI”, Thin Solid Films 262, 93 (1995)
5. T. N. Khoperia, T. J. Tabatade and T. I. Zedgenidze “Formation of microcircuits in microelectronics by electroless deposition”, Electrochimica Acta, 42, 3049 (1997)
6. Y. Shacham-Diamand, S. Lopatin “High aspect ratio quarter-micron electroless copper integrated technology”, Microelectron. Eng. 37/38, 77 (1997)
7. J. Li and Y. Schacham-Diamand, “ Copper deposition and thermal stability issues in copper-based metallization for ULSI technology”, Mater. Sci. Rep., 9, 1 (1992)
8. Y. Shacham-Diamand, Y. Severdlov, and N. Petrov, “Electroless deposition of thin-film cobalt-tungsten-phosphorus layers using tungsten phosphoric acid for ULSI and MEMS application”, J. Electrochem. Soc., 148, c162 (2001)
9. M. W. Jawitz, Printed Circuited Board Materials Handbook, chapter 23 and p.12.4, McGraw-Hill, New York (1997)
10. S. Abe, M. Ohkubo, T. Fujinami and H. Honma, “The electroless copper plating of small via holes”, Trans. IMF, 76, 12 (1998)
11. H. H. Hsu, C. W. Teng, S. J. Lin and J. W. Yeh, “ Sn/Pd catalyzation and electroless copper deposition on TaN diffusion barrier layers”, J. Electrochem. Soc., 149, c143 (2002)
12. M. Paunovic and M. Schlesigerm, Fundaments of Electrochemical Deposition, chapter 8 and p.134, John Wiley & Sons, New York (1998)
13. M. Schlesinger and M. Paunovic, Modern Electroplating 4th, chapter 17, 18 and 19, John Wiley & Sons, New York (2000)
14. C. R. Shipley, “ Method of electroless deposition on a substrate and catalyst solution therefore”, U. S. Patent3,011,920 (1961)
15. M. Paunovic, “ Ligand effect in electroless copper deposition”, J. Electrochem. Soc., 124, 349 (1977)
16. E. E. Kalu, “Electrochemical measurement of the activity of printable catalysts used for electroless metallization”, Plating Surf. Finish., October, 62 (2000)
17. D. A. Buttry and M. D. Ward, “Measurement of interfacial processes at electrode surface with the electrochemical quartz crystal microbalance”, Chem. Rev., 92, 1355 (1992)
18. A. J. Bard and L. R. Faulknerm, Electrochemical Methods, P. 725, John Wiley & Sons, New York (2001)
19. J. Wang, Analytical Electrochemistry, P. 52, John Wiley & Sons, New York (2000)
20. Z. Jusys, R. Pauliukaité and A. Vaškelis “EQCM study of the effect of ligands on the rate of Cu2+ reduction by formaldehyde”, Phys. Chem. Chem. Phys., 1, 313 (1999)
21. A. Zouhou, H. Vergnes and P. Duverneuil, “Determination of electroless kinetics: a QCM study” Microelectron. Eng. 56, 177 (2001)
22. K. Kobayakawa, M. Morita, K. Miyauchi, Y. Sato and E. Fujimoto, “ Catalytic activity of sputtered palladium films for electroless nickel studied using a quartz crystal microbalance”, September, 77 (2000)
23. H. S. Nalwa, Handbook of Nanostructure Materials and Nanotechnology Volume 5-Organic, Polymers, and Biological Materials, Chapter 11, Academic Press, New York (2000)
24. A. N. Cleland and M. L. Roukes “ A nanometer-scale mechanical electrometer”, Nature, 392, 160 (1998)
25. P. G. Collins, M. S. Arnold, and P. Avouris “Engineering Carbon Nanotubes and nanotube circuits using electrical breakdown” Science, 292,706 (2001)
26. K. D. Hermanson, S. O. Lumsdon, J. P. Williams, E. W. Kaler, and O. D. Velev “Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions” Science, 294,1082, 2001
27. A. Bachtold, P. Hadley, T. Nakanishi, and C.Dekker “Logic circuits with carbon nanotube transistors” 294,1317 (2001)
28. A. G. Cullis and L. T. Canham “Visible light emission due to quntum size effects in highly porous crystalline silicon”, Nature, 353, 335 (1991)
29. M. A. Reed, “Quantum dots” Scientific American, January, 188 (1993)
30. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quatum dots”, Science, 271, 933 (1996)
31. R. J. Gehr and R. W. Boyd “Optical properties of nanostructure optical materials”, Chem. Mater., 8, 1807 (1996)
32. L. L. Beecroft and C. K. Ober “Nanocomposite materials for optical applications” Chem. Mater., 9, 1302 (1997)
33. M. P. Pileni, “ Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals”, Adv. Funct. Mater., 11, 323 (2001)
34. S. H. Joo, S. J. Chol, I. Oh, J. Kwak, Z. Liu, O. Terasaki and R. Ryoo, “Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles” Nature, 412, 169 (2001)
35. F. Favier, E. C. Walter, M. P. Zach, T. Benter and R. M. Penner,”Hydrogen sensors and switches from electrodeposited palladium mesowire arrays” Science, 293, 2227 (2001)
36. C. W. Chen and M. Akashi, “Synthesis, Characterization, and catalytic properties of colloidal platinum nanoparticles protected by poly(N-isopropylacrylamide)” Langmuir, 13, 6465 (1997)
37. R. L. Cohen and K. W. West, “Characterization of tin-palladium sols”, Chem. Phys. Lett., 16, 128 (1972)
38. R. L. Cohen and K. W. West, “Generative and stabilizing process in tin-palladium sols and palladium sol sensitizers”, J. Electrochem. Soc., 120, 502 (1973)
39. T. Osaka and H. Takematsu, “A study on activation and acceleration by mixed PdCl2/SnCl2 catalysts for electroless metal deposition” J. Electrochem. Soc., 127, 1021 (1980)
40. T. Osaka and H. Takematsu, “ An electron diffration study on mixed PdCl2/SnCl2 catalysts for electroless plating”, J. Electrochem. Soc., 127, 2343 (1980)
41. E. J. M. O’Sullivan, J. Horkans, J. R. White and J. M. Roldan, “ Characterization of PdSn catalylysts for electroless metal deposition” , IBM J. Res. Develop., 32, 591 (1988)
42. J. Horkans, J. Kim, C. Mcgrath, and L. T. Romankiw, “ A TEM study of the effect of accelerators on Pd-Sn colloidal catalysts and on the initiation of electroless Cu deposition on epoxy”, J. Electrochem. Soc., 134, 300 (1987)
43. M. Froment, E. Queau, J. R. Martin and G. Stremsdoerfer, “Structure and analytical characteristics of adsorbed Pd-Sn colloids” J. Electrochem. Soc., 142, 3373 (1995)
44. J. F. Hamilton and R. C. Baetzold, “Catalysis by small metal clusters” Science, 205, 1213 (1979)
45. Z. Xu, F. S. Xiao, S. K. Purnell, O. Alexeev, S. Kawi, S. E. Deutsch and B. C. Gates, “ Size-dependent catalytic activity of supported metal clusters”, Nature, 372, 346 (1994)
46. L. N. Lewis, “ Chemical Catalysis by colloids and clusters”, Chem. Rev., 93,2693 (1993)
47. Y. Berkovich and N. Garti, “ Catalytic colloidal Pd dispersion in water-organic solution of quaternary ammonium salt” Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 128,91 (1997)
48. P. P. Edwards, R. L. Johnson and C. N. R. Rao, Metal Clusters in Chemistry Volume 3, chapter 4.8, edited by P. Braunstein, L. A. Oro and P. R. Raithby, Wiley-Vch, Weinheim (1999)
49. M. N. Vargaftik, N. Yu Kozitsyna, N. V. Cherkashina, R. I. Rudy, D. I. Kochubey and I. I.Moiseev, Metal Clusters in Chemistry Volume 3, chapter 4.5, edited by P. Braunstein, L. A. Oro and P. R. Raithby, Wiley-Vch, Weinheim (1999)
50. T. Teranishi and M. Miyake “ Szie control of palladium nanoparticles and their crystal structures” Chem. Mater., 10, 594 (1998)
51. P. John Thomas, G. U. Kulkani, and C. N. R. Rao “ Magic nuclearity giant clusters of metal nanocrystals formed by mesoscale self-assembly” J. Phys. Chem. B 105,2515 (2001)
52. M. Faraday, Phil. Trans. R. Soc. Lond. 147, 145 (1857)
53. D. Bethell and D. J. Schrffrin, “Nanotechnology and Nucleotides” Nature, 382, 581 (1996)
54. G. Mie, Ann. Physik. , 25, 377 (1908)
55. J. A. Creighton and D. G. Eadon, “ Ultraviolet-visible Absorption Spectra of the Colloidal Metallic Elements”, J. Chem. Soc. Faraday Trans., 87,3881 (1991)
56. P. Mulvaney, “ Spectroscopy of Metal colloids-some comparison with Semiconductor colloids”, in Semiconductor Nanoclusters-Physical, Chemical, and Catalytic Aspects edited by P. C. Kamat and D. Meisel, Elsevier, Amsterdam (1997), p. 99
57. P. Mulvaney, “ Surface Plasmon Spectroscopy of Nanosized Metal Particles”, Langmuir, 12, 788 (1996)
58. H. Fröhlich, Electronenteorie der Metalle, Springer, Berlin (1936)
59. C. Kittel, Introduction to Solid State Physics 7th ed, Wiley, New York (1996)
60. U. Kreibig, C. V. Fragtein, Z. Phys. 224, 307 (1969)
61. C. Petit, P. Lixan, and M. -P. Pileni “In situ synthesis of silver nanocluster in AOT reverse micelles” J. Phys. Chem. 97, 12974 (1993)
62. A. Taleb, C. Petit, and M.-P Pieni “Synthesis of high monodisperse silver nanoparticles from AOT reverse micelles : A way to 2D and 3D self-organization” Chem. Mater. 9, 950 (1997)
63. L. Rodriguez-Sanchez, M.C. Blanco, M.A. Lopez-Quintela “Electrochemical synthesis of silver nanoparticles” J. Phys.Chem. B 104,9683 (2000)
64. Z. Q. Zhang, R. C. Patel, R. Kothari, C. P. Johnson, S. E. Friberg and A. P. Aikens “ Stable Silver Clusters and Nanoparticles Prepared in Polyacrylate and Inverse Micellar Solutions” J. Phys.Chem. B 104,1176 (2000)
65. H. Ohde, F. Hunt and C. M. Wai, “Synthesis of Silver and Copper Nanoparticles in a Water-in-Supercritical-Carbon Dioxide Microemulsion” Chem. Mater. 13,4130 (2001)
66. S. Underwood and P. Mulvaney, “Effect of the Solution Index on the Color of Gold Colloids” Langmuir, 10,3427 (1994)
67. K. R. Brown, D. G. Walter, and M. J. Natan, “ Seeding of colloidal Au Nanoparticle Solution. 2. Improved Control of Particle Size and Shape” 12, 306, 2000
68. N. R. Jana, L. G.earheart, and C. J. Murphy, “ Seeding Growth for Szie control of 5-40 nm Diameter Gold Nanoparticles” Langmuir, 17, 6782 (2001)
69. D. I. Gittins and F. Caruso, “ Tailoring the Polyelectrolyte Coating of Metal Nanoparticles” J. Phys. Chem. B 105, 6846, 2001
70. C. A. Foss, Jr., G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-Synthesized Nanoscopic Gold Particles: Optical Spectra and Effects of Particle Size and Shape” J. Phys. Chem. 98, 2963 (1994)
71. T. Selvan, J. P. Sppatz, H. -A. Klok and M. Möller, “ Gold-Polypyrrole Core-Shell Particles in Diblock Copolymer Micelles” Adv. Mater. 10, 132 (1998)
72. T. K. Sau, A. Pal and T. Pal “ Size Regime Dependent Catalysis by Gold Nanoparticles for the Reduction of Eosin” J. Phys. Chem. B. 105, 9266 (2001)
73. J. Zhang, R. M. Lahtinen, K. Kontturi, P. R. Unwin and D. J. Schiffrin, “Electron tranfer reactions at gold nanoparticles” Chem. Commun. 1818 (2001)
74. M. J. Hostetler, J. E. wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans and R. W. Murray, “ Akkanethiolate Gold Cluster Molecules With Core Diameter form 1.5 to 5.2 nm: Core and Monolaye Properties as a Function of Core Szie” Langmuir, 14, 17 (1998)
75. C. K. Yee, R. Jordan, A. Ulman, H. White, A. King, M. Rafailovich, and J. Sokolov, “ Novel one-phase synthesis of Thiol-Functionalized Gold , Palladium, and Iridium Nanoparticles Using Superhydride” Langmuir,15, 3486, (1999)
76. A. Kumar, P. Mukherjee, A. Guha, S. D. Adyantaya, A. B. Mandale, R. Kumar, and M. Sastry “Amphoterization of Colloidal Gold Particles by Capping with Valine Molecules Langmuir, 16,9775 (2000)
77. S. A. Vorobyova, N. S. Sobal and A. I. Lesnivikoch “Colloidal gold, prepared by interphase reduction” Colloids Surf. A 176, 273 (2001)
78. C. Fan and L. Jing “Preparation of Hydrophobic Nanometer Gold Particles and Their Optical Absorption in Chloroform” Langmuir 13, 3059 (1997)
79. H. Yao, Y. Momozawa, T. Hamatani and K. Kimura “Stepwise Size-Selective Extraction of Carboxylate-Modified Gold Nanoparticles from an Aqueous Suspension into Toluene with Tetraoctylammonium Cations” Chem. Mater. 13, 4692, 2001
80. I. Lisiecki, F. Billoudet and M. P. Pileni, “Control of the Shaoe and the Size of the Copper Metallic Particles” J. Phys. Chem. 100, 4160 (1996)
81. M. P. Pileni, “ Collidal Assemblies Used as Tamplates to Control the Size , Shape and Self Origanization of Nanoparticles” Ber. Bunsenges. Phys. Chem. 101, 1578 (1997)
82. M. P. Pileni, “Collidal self-assemblies used as templates to control size, shape and self-organization of nanoparticles” Superamolecular Science 5, 321 (1998)
83. N. A. Dhas, C. P. Raj and A. Gedanken, “ Synthesis, Characterization, and Properties of Metallic copper Nanoparticles” Chem. Mater. 10, 1446 (1998)
84. M. P. Pileni, “Nanosized Particles Made in Colloidal Assemblies” Langmuir 13, 3266 (1997)
85. C. L. Lee, Syntheses and Properties of Gold Nanorods, MS thesis, National Chung Chen University, Republic of China, Call. No. 008.868 /87 8476 (1998)
86. B. M. I. Van der Zande, M. R. Böhmer, L. G. J. Fokkink and C. Schönenberger, “ Agueous Gold Sols of Rod-Shaped Particles” J. Phys. Chem. 101, 852 (1997)
87. C. J. Murphy and N. R. Jana, “Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires” Adv. Mater. 14, 80 (2002)
88. N. R. Jana, L. Gearheart and C. J. Murphy, “Wet Chemical Synthesis of Silver nanorods and nanowires of controllable aspect ratio” Chem. Commun., 617 (2001)
89. N. R. Jana, L. Gearheart and C. J. Murphy, “Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods” J. Phys. Chem. B 105, 4065 (2001)
90. M. Satstry, N. Lala, V. Patil, S. P. Chavan and A. G. Chittiboyina, “Optical Absorption Study of the Biotin-Avidin Interaction on Colloidal Silver and Gold Particles” Langmuir, 14, 4138 (1998)
91. S. Mann, W. Shenton, M. Li, S. Connolly and D. Fitzmaurice, “ Biologically Programmed Nanoparticles Assembly” Adv. Mater. 12, 147 (2000)
92. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin “ Selective Colormetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles” Science 277, 1078 (1997)
93. J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, and R. L. Letsinger, J. Am. Chem. Soc. 120, 1959 (1998)
94. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature 382, 607 (1996)
95. R. R. Reynolds, C. A. Mirkin, and R. L. Letsinger, J. Am. Chem. Soc. 122, 3759, (2000)
96. J. J. Storhoff, A. L. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Leitsinger, and G. C. Schatz, J. Am. Chem. Soc. 122, 4640 (2000)
97. S. Chen, K. Hung and J. A. Stern, “Alkanethiolate-protected palladium nanoparticles” Chem. Mater. 12, 540 (2000)
98. A. Badia, W. Gao, S. Singh, L. Demer, L. Cuccia and L. Reven “Structure and Chain Dynamics of Alkanethiol-Capped Gold Colloids” Langmuir, Langmuir 12, 1262 (1996)
99. C. S Weibecker, M. V. Merritt, and G. M. Whitesides “ Molecular-selfAssembly of Aliphatic Thiols on Gold Colloids” Langmuir, 12, 3763 (1996)
100.Y. S. Shon, S. M. Gross, B. Dawson, M. Porter, and R. W. Murray “ Alkanethiolate-Protected Gold Clusters Generated from Sodium S-Dodecylthiosulfate (Bunte Salt)” Langmuir 16, 6555 (2000)
101. M. Sastry, A. Kumar, P. Mukherjee “ Phase transfer of aqueous colloidal gold particles into organic solution containing fatty amine molecules” Colloids Surf. A 181,255 (2001)
102. A. Kumar, P. Mukherjee, A. Guha, S. D. Adyantaya, A. B. Mandale, R. Kumar, and M. Sastry “Amphoterization of Colloidal Gold Particles by Capping with Valine Molecules and their Phase Transfer from Water to Tolune by Electrostatic Coordination with Fatty Amine Molecules” Langmuir 16, 9775 (2000)
103. M. D. Musick, David, J. Pena, S. L. Botsko, T. M. McEvoy, J. N. Richardson, and M. J. Natan “ Electrochemical Properties of Colloidal Au-Based Surfaces: Multilayer Assemblies and Seeded Colloid Films” Langmuir 15,844 (1999)
104. L. A. Lyon, D. J. Pena, and M. J. Natan “ Surface Plasmon Resonance of Au Colloid-Modified Au Films: Particles Size Dependence” J. Phys. Chem. B 103,5826 (1999)
105. K. R. Brown, L. A. Lyon, A. P. Fox, B. D. Reiss, and M. J. Natan, “ Hydroxylamine Seeding of Colloidal Au Nanoparticles. 3. Controlled Formation of Conductive Au Films” Chem. Mater. 12. 314 (2000)
106. G. Schmid, H. West, J. O. Malm, J. O. Bovin and C. Grenthe, Chem. Eur. J. 2,1099 (1996)
107. Y. Mizukoshi, T. Fujimoto, Y. Nagata, R. Oshima, and Y. Maeda, ‘ Characterization and Catalytic Activity of Core-Shell Structure Gold/ Palladium Bimetallic Nanoparticles Synthesized by the Sononchemical Method” J. Phys. Chem. B 104, 6028 (2000)
108. N. Toshima, M. Harada, K. Yamazaki, and K. Asakura, J. Phys. Chem. 96,9927, (1992)
109. R. J. Davus and M. Boundart, J. Phys. Chem. 98,5471 (1994)
110. A. F. Lee, J. Phys. Chem. 99, 6096 (1995)
111. N. Toshima, M. Harada T. Yonezawa, K. Kushihashi, and K. Asakura, J. Phys. Chem. 95, 7448 (1991)
112. N. Toshima, T. Yonezawa, and K. Kushihashi, J. Chem. Soc. , Faraday. Trans. 89, 2537 (1993)
113. N. Toshima, Y. Shirashi, A. Shitsuki, D. Ikenaga, and Y. Wang, “ Novel synthesis, structure and catalysis of inverted core/shell structure Pd/Pt bimetallic nanocluster” Eur. Phys. J. D 16, 209 (2001)
114. M. S. Nashner, A. I. Frenkel, D. Somerville, C. W. Hills, J. R. Shapley, and R. G. Nuzzo, ‘ Core Shell inversion during nucleation and growth of bimetallic Pt/Ru Nanoparticles” J. Am. Chem Soc. 120, 8093 (1998)
115. M. Michaelis, A. Henglin, P. Mulvaney, J. Phys. Chem. 98, 6212 (1994)
116. A. Henglein, “Colloidal Palladium Nanoparticles : Reduction of Pd by H2; PdcoreAushellAgshell Particles” J. Phys. Chem. B 104, 6683 (2000)
117. C. S. Ah, S. D. Hong, and D. J. Jang “ Prepartion of AucoreAgshell Nanorods and Characterization of Their Surface Plasmon Resonance” J. Phys. Chem B 105, 7871 (2001)
118. G. E. Possin, Rev. Sci. Intrum. 41, 722 (1970)
119. C. J. Brumlik, C. R. Martin, “Template synthesis of Metal Microtubules” J. Am. Chem. Soc. 113, 3174 (1991)
120. C. R. Martin, “ Template Synthesis of Polymeric and Metal microtubules” Adv. Mater. 3, 457 (1991)
121. C. A. Foss, G. L. Hornyak, J. A. Stockert and C. R. Martin “Optical-properties of Composite Membranes Containing Arrays of Nanoscopic gold cylinders” J. Phys. Chem. 96, 7497, 1992
122. C. A. Foss, G. L. Hornyak, J. A. Stokert and C. R. Martin, “Optical Transparent Nanometal composite Membranes” Adv. Mater. 5, 135 (1993)
123. C. J. Brumilik, V. P. Menon and C. R. Martin, “Template Synthesis of Metal Microtubule Ensembles Utilizing Chemical, Electrochemical, and Vacuum Deposition Techniques” J. Mater. Res. 9, 1174 (1994)
124. R. V. Parathasarathy and C. R. Martin “Template-Synthesized Polyaniline Microtubules” Chem. Mater. 6, 1627 (1994)
125. C. R. Martin, “Nanomaterials- A Membrane- based Synthetic Approach” Science 266, 1961 (1994)
126. M. Nishizawa, V. P. Menon and C. R. Martin, “ Metal Nanotubule Membranes with Electrochemically Switchable ion-Transport Selectivity” Science 268, 700 (1995)
127. V. P. Menon and C. R. Martin, “ Fabrication and Evaluation of Nanoelectrode Ensembles” Anal. Chem. 67, 1920 (1995)
128. G. L. Hornyak, K. L. N. Phani, D. L. Kunkel, V. P. Menon and C. R. Martin, “Fabrication, Characterization and Optical Theory of Aluminum Nanometal Nanoporous Membrane Thin Film Composites” Nanostruct. Mater. 6, 839 (1995)
129. C. R. Martin, “ Membrane-based Synthesis of Nanomaterials” Chem. Mater. 8, 1739 (1996)
130. G. L. Hornyak, C. J. Patrissi and C. R. Martin, “ Fabraction, Characterization, and Optical properties of gold nanoparticle/porous alumina composites: The nonscattering Maxwell-Garnett Limit” J. Phys. Chem. B 101, 1548 (1997)
131. V. M. Cepak, J. C. Hulteen, G. L. Che, K. B. Jirage, B. B. Lakshmi, E. R. Fisher, C. R. Martin and H. Yoneyyama, “ Chemical Strategies for template syntheses of composite micro- and nanostructure” Chem. Mater. 9, 1065 (1997)
132. G. L. Hornyak, C. J. Patrisssi, C. R. Martin, J. C. Valmalette, J. Dutta and H. Hofmann “ Dynamic Maxwell-Garnett Otical modeling of nanorod porous alumina composites: Mie and Kappa influence on absorption maxima” Nanostruct. Mater. 9, 575 (1997)
133. G. L. Hornyak, C. J. Patrisssi, E. B. Oberhauser, .C. R. Martin, J. C. Valmalette, L. Lemarire, J. Dutta and H. Hofmann “ Effective medium theory charterization of Au/Ag nanoalloy porous alumina composites” Nanostruct. Mater. 9, 571 (1997)
134. J. C. Hulteen, H. X. Chen, C. K. Chambliss and C. R. Martin “ Template Synthesis of Carbon Nanotubule and nanofilber arrays” Nanostruct. Mater. 9, 133 (1997)
135. J. C. Hulteen and C. R. Martin “ A general template-based method for the preparation of nanomaterials” J. Mater. Chem. 7, 1075 (1997)
136. G. L. Hornyak and C. R. Martin, “ Optical properties of a family of Au- nanoparticle-containing alumina membranes in which the nanoparticle shape is varied from needle-like (prolate) to spheroid, to pancake-like (oblate)” Thin Solid Films 303, 84 (1997)
137. J. C. Hulteen, C. J. Patrissi, D. L. Miner, E. R. Crosthwait, E. B. Oberhauser and C. R. Martin “Changes in the shape and optical properties of gold nanoparticles contained within alumina membranes due to low-temperature annealing” J. Phys. Chem. B 101, 39 (1997)
138. K. B. Jirage, J. C. Hulteen and C. R. Martin “ Nanotubule-based molecular filitration membranes” Science, 278, 655 (1997)
139. G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher and R. S. Ruoff “Chemical vapor deposition based of carbon nanotubes and nanofibers using a template method” Chem. Mater. 10, 260 (1998)
140. G. L. Che, B. B. Lakshmi, E. R. Fisher and C. R. Martin “ Carbon nanotubule membranes for electrochemical energy storage and production” Nature 393, 346 (1998)
141. S. De Vito and C. R. Martin “ Toeard colloidal dispersion of template-synthesized polypyrrole nanotubules” Chem. Mater. 10, 1738 (1998)
142. V. M. Cepak and C. R. Martin “ Preparation and S tability of Template-synthesized metal nanorod sols in organic solvents” J. Phys. Chem. B 102, 9985 (1998)
143. S. A. Sapp, B. B. Lakshmi and C. R. Martin, “ Template Synthesis of bismuth telluride nanowire” Adv. Mater. 11, 402 (1999)
144. S. A. Sapp, D. T. Mitchell and C. R. Martin, “ Using template-synthesized micro- and nanowire as building blocks for self-assembly of supramolecular architecture” Chem. Mater. 11, 1363 (1999)
145. C. R. Martin and D. T. Mitchell, “ Template-synthesized nanomaterials in electrochemistry” Electroanal. Chem. 21, 1 (1999)
146. C. R. Martin, M. Nishizawa, K. Jirage and M. Kang “ Investigations of transport properties of gold membranes” J. Phys. Chem. B 105, 1925 (2001)
147. C. R. Martin, M. Nishizawa, K. Jirage, M. S. Kang and S. B. Lee “ Controlling ion-transport selectivity in gold nanotubule membrane” Adv. Mater. 13, 1351 (2001)
148. S. F. Yu, S. B. Lee, M. Kang; C. R. Martin “ Szie-based protein separation in poly(ethylene glycol)-dervaized gold nanotubule membranes” Nano Letters 1, 495 (2001)
149. S. B. Lee and C. R. Martin “ pH-switchable, ion-permselective gold nanotubule membrane based on chemisorbed cycteine” Anal. Chem. 73, 768 (2001)
150. K. B. Jirange, J. C. Hulteen and C. R. Martin “ Effect of thiol chemisorption transport properties of gold nanotubule membranes” Anal. Chem. 71, 4913 (1999)
151. S. B. Lee and C. R. Martin, “ Controlling the transport properties of gold nanotubule membranes using chemisorbed thiols” Chem Mater. 13, 3236 (2001)
152. C J. Patrissi and C. R. Martin, “Improving the volumetric energy densities of nanostructure V2O5 electrodes prepared using the template method” J. Electrochem. Soc. 148, A1247 (2001)
153. N. C. Li, C. R. Martin and B. Scrosati “ Nanomaterials-based Li-ion battery electrode” J. Power Sources, 97, 240 (2001)
154. C. L. Che, S. A. Miller, E. R. Fisher and C. R. Martin “ An electrochemically driven actuator based on a nanostructured carbon materials” Anal. Chem. 71, 3187 (1999)
155. M. Nishizawa, K. Mukai, S. Kuwabata, C. R. Martin and H. Yoneyama, “Templates synthesis of polyporrole-coated spinel LiMn2O4 nanorubules and their properties as cathode active materials for lithium batteries” J. Electrochem. Soc. 144, 1923 (1997)
156. P. Chen. X. Wu, J. Lin and K. L. Tan “Synthesis of Cu nanoparticles and Microsized Fibers by Using carbon Nanotubes as a Templates” J. Phys. Chem. B 103, 4559 (1999)
157. B. Xue, P. Chen, Q. Hong, J. Lin and K. L. Tan “ Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes” J. Mater. Chem. 11, 2378 (2001)
158. S. Fullam, D. Cottell, H. Rensmo and D. Fitzmaurice “ Carbon Tmeplated Self-Assembly and Thermal Processing of Gold nanowires” Adv. Mater. 12, 1430 (2000)
159. W. P. Cai and L. D. Zhang, “Synthesis and Structure and Optical properties of Mesoporous Silica containing Silver nanoparticles” J Phys-Condens. Matter 9, 7257 (1997)
160. W. P. Cai and L. D. Zhang, “Characterization and the optical switching phenomenon of porous silica dispersed with silver nano-particles within its pores” J Phys-Condens. Matter 8, L591 (1996)
161. W. P. Cai, H. C. Zhong and L. D. Zhang, “Optical measurements of oxidation behavior of silver nanometer particle with pores of silica host” J. Appl. Phys. 83, 1705 (1998)
162. H. Z. Shi, L. D. Zhang and W. P. Cai, “Prepartion and optical absorption of gold nanoparticles within pores of mesoporous silica” Mater. Res. Bull. 35, 1689 (2000)
163. W. Chen, W. P. Cai, Z. P. Zhang and L. Zhang, “A convenient synthetic route to gold nanoparticles dispersed within mesoporous silica” Chem. Lett. , 152 (2001)
164. W. Chen, W. P. Cai, C. H. Liang and L. D. Zhang, “ Synthesis of gold nanoparticles dispersion within pores of mesoporous silica induced by ul;transonic irradiation and its characterization” Mater. Res. Bull. 36, 335 (2001)
165. W. Chen, W. P. Cai, L. Zhang, G. Z. Wang and L. D. Zhang, “Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica” J. Colloid Interface Sci. 238, 291 (2001)
166. W. Chen, W. P. Cai, Z. X. Chen and L. D. Zhang, “ Structure change of mesoporous silica with sonochemically prepared gold nanoparticles in its pores” Ultrason. Sonochemistry 8, 335 (2001)
167. W. Chen, W. P. Cai, Y. Lei and L. D. “A sonochemical approach to the confined synthesis of palladium nanoparticles in mesoporous silica” Mater. Lett. 50, 53 (2001)
168. W. P. Cai, H. Hofmeister and T. Rainer, “ Surface effect on the size evolution of surface plasmon rsonaces of Ag and Au nanoparticles dispersed dispersed within mesoporous silica” Physica E, 11, 339 (2001)
169. W. P. Cai, H. Hofmeister, T. Rainer and W. Chen, “ Optical properties dispersed within the pores of monolithic mesoporous silica” J. Nanopart. Res. 3, 443 (2001)
170. H. P. Lin, Y. S. Chi, J. N. Lin, C. Y. Mou and B. Z. Wan “Direct synthesis of MCM-41 mesoporous aluminosilicates containing Au nanoparticles in aqueous solution” Chem. Lett. 11, 1116 (2001)
171. Y. Guari, C. Thwiuleuz, A. Mehdi, C. Reye, R. J. P. Corriu, S. Gomez-Gallardo, K. Philippot, B. Chaidret and R. Dutartre “ In situ formation of gold nanoparticles within functionalised ordered mesoporous silica via an organometallic ‘chimie douce’ approach” Chem. Commun. 15, 1374 (2001)
172. S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki and R. Ryoo “ ordered nanoporous arrays of carbon supporting high dispersion of platinum nanoparticles” Nature 412, 169 (2001)
173. Y.-J Han, J. M. Kim, and G. D. Stucky “ Preparation of Noble Metal nanowires Using Hexagonal Mesoporous Silica SBA-15” Chem. Mater. 12, 2068 (2000)
174. K.-B Lee, S.-M. Lee and J. Cheon, “ Szie-controlled synthesis of Pd Nanowires Using a Mesoporous Silica via Chemical Vapor infiltration” Adv. Mater. 13, 517 (2001)
175. H. Kang, Y.-W. Jun, J.-I. Park, K.-B. Lee, and J. Cheon “ Synthesisof porous palladium superlattices Nanoballs and Nanowires “ Chem. Mater. 12, 3530 (2000)
176. C.-M. Yang, H.-S. Sheu, and K.- J. Chao, “Templated Synthesis and Structural Study of Densely Packed Metal Nanostructure inMCM-41 and MCM-48” Adv. Fun. Mater. 12, 143 (2002)
177. B. Messer, J.-H Song, M. Huang, Y. Wu, F. Kim and P. Yang, “Surfactant-Induced Mesoscopic Assemblies of Inorganic Molecular Chains” Adv. Mater. 12, 1526 (2000)
178. C. Petit, P. Lixon, and M.-P. Pileni, “ In Situ Synthesis of silver Nanocluster in AOT Reverse Micelles” J. Phys. Chem. 97, 12974 (1993)
179. A. Taleb, C. Petit and M. P. Pileni, “Synthesis of highly monodiperse silver nanoparticles form AOT reverse micelles: A way to 2D and 3D self-organization” Chem. Mater. 9, 950 (1997)
180. M.-P. Pileni, A. Taleb and C. Petit, “Silver metal nanosized particles: Control of particle size, self assemblies in 2D and 3d superlattices and optical properties” J. Disper. Sci. Tech. 19, 185 (1998)
181. M-P Pileni “Fabrication and Physical Properties of Self-organized silver nanocrystal” Pure. Appl. Chem. 72, 53 (2000)
182. I. Lisiecki and M. P. Pileni, “Synthesis of copper metallic clusters using reverse micelles as microreactors” J. Am. Chem. Soc. 115, 3887 (1993)
183. M. P. Pileni and I. Lisieckii, “Nanometer Metallic copper particle synthesis in reverse micelles” Colloid. Surface. A 80, 63 (1993)
184. M.-P. Pileni, J. Tanori and A. Filankembo “Biomimetic strategies for the control of size , shape and self-organization of nanoparticles” colloid. Surface. A 123, 561 (1997)
185. M-P. Pileni “Nanoszied particles made in colloidal assemblies” Langmuir 13, 3266 (1997)
186. I. Lisiecki, F. Billoudet and M.-P. Pileni “Synthesis of copper nanoparticles in gelified microemulsion and in reverse micelles” J. Mol. Liq. 72, 251 (1997)
187. M.-P. Pileni, “Colloidal assemblies used as templates to control the size, shape and self organization of nanoparticles” Ber. Bunsen-Ges. Phys. Chem. Chem. 101, 1578 (1997)
188. M. P. Pileni, “Collidal self-assemblies used as templates to control size, shape and self-organization of nanoparticles” Superamol. Sci. 5, 321 (1998)
189. M. P. Pileni, T. Gulik-Krzywicki, J. Tanori, A. Filankembo and J. C. Dedieu “Template design of microreactor with colloidal assemblies: control the growth of copper metal rods” Langmuir 14, 7359 (1998)
190. J. Tanori and M.-P. Pileni “Change in the shape of copper nanoparticles in ordered phases” Adv. Mater. 7, 862 (1995)
191. J. Tanori and M.-P. Pileni “Control of the shape of copper metallic particles by using a colloidal system as templates” Langmuir 13, 639 (1997)
192. M. P. Pileni, B. W. Ninham, T. Gulik-Krzywicki, J. Tanori, I. Lisieck and A. Filankembo “ Direct relationship between shap and size of template and synthesis of copper metal particles” Adv. Mater. 11, 1358 (1999)
193. A. Filankembo, P. Andre, I. Lisiecki, T. Gulik-Krzywicki, B. W. Ninham and M. P. Pileni, “ Mesostructure fluids: supra aggregates made of interdigitated reverse micelles” Colloid. Surface. A 174, 221 (2000)
194. J. Legrand; C. Petit, D. Bazin and M. P. Pileni “Collective effective on maganetic properties of 2D superlattices of nanosized cobalt” Appl. Surf. Sci. 164, 186 (2000)
195. C. Petit and M. P. Pileni “ Physcial properties of self-assembled nanoszied cobalt particles” Appl. Surf. Sci. 162, 519 (2000)
196. J. Legrand, A. T. Ngo, C. Petit and M. P. Pileni “Domain shapes and Superlattices made of cobalt nanocrystals “ Adv. Mater. 13, 58 (2001)
197. M.-P. Pileni “ Self-assemblies of nanocrystals ; fabrication and collective properties” Appl. Surf. Sci. 171, 1 (2001)
198. J. Legrand, C. Petit and M. P Plieni “Domain shapes and superlattices made of 8 nm cobalt nanocrystals: Fabrication and magnetic properties” J. Phys. Chem. B 105, 5643 (2001)
199. M.-P. Pileni “Magnetic Fluids: Fabrication, Magnetic Properties, and organization of nanoparticles” Adv. Fun. Mater. 11, 323 (2001)
200. X. Zhang and K. Y. Chang “Microemulsion synthesis and electrocatalytic properties of platinum-cobalt” J. Mater. Chem. 12, 1203 (2002)
201. V. Arcoleo, G. Cavallaro, G. Lamanna and V. T. Liveri “Calorimetric inverstigation on the formation of palladium nanoparticles in water AOT n-heptane microemulsions” Thermochim. Acta 254, 111 (1995)
202. B. K. Paul and S. P. Moulik “Microemulsions: An overvies” J. Diser. Sci. Tech. 18, 301 (1997)
203. M. L. Wu, D. H. Chen and T. C. Huang “Preparation of Au/Pt bimetallic nanoparticles in water-in-oil microemulsions”Chem Mater. 13, 599 (2001)
204. S. Papp and I. Dékány, “Structure properties of Palladium nanoparticles embedded in reverse microemulsion” Colloid Polym. Sci. 279, 449 (2001)
205. M. T. Reetz and W. Helbig, “Szie-selective Synthesis of Nanostructured Transition Metal Cluster” J. Am. Chem. Soc. 116, 7401 (1994)
206. M. T. Reetz, W. Helbig, S. A. Quaiser, U. Simming, N. Breuer and R. Vogel, “Visualization of surfactants on Nanostrectured Palladium Clusters by a Combination of STM and High-resolution TEM” Science 267, 367 (1995)
207. M. T. Reetz and S. A. Quaiser, “ A new method for the preparation of Nanostructured Metal Clusters” Angew. Chem. Int. Ed. 34, 2240 (1995)
208. M. T. Reetz, W. Helbig and S. A. Quaiser, “ Electrochemical preparation of nanostructured bimetal clusters” Chem. Mater. 7, 2227 (1995)
209. M. T. Reetz, S. A. Quasier and C. Merk “Electrochemical preparation of Nanostructured Titanium Clusters: Characterization and use in McMurry-type coupling reactions” Chem. Ber. 129, 741 (1996)
210. M. T. Reetz, M. Winter, R. Breinbauer, T. Thurn-Albrecht and W. Vogel “Size-Selective electrochemical preparation of surfactant-stabilized Pd-, Ni- and Pt/Pd colloids” Chem-Eur. J. 7, 1084 (2001)
211. Y. Y. Yu, S. S. Change, C. L. Lee and C. R. C. Wang “Gold Nanorods: Electrochemical Synthesis and Optical Properties” J. Phys. Chem. B 1010, 6661 (1997)
212. B. Nikoobakht and M. A. El-Sayed “Evidence For Bilayer Assembly of Cationic Surfactants on the Surface of Gold Nanorods” Langmuir 17, 6368 (2001)
213. G. S. Attard, P. N. Barlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen and J. H. Wang “ Mesoporous Platinum Films lyotropoc liquid crystalline phase” Science 278, 838 (1997)
214. G. S. Attard, C. G. Goltner, J. M. Corker, Shenke and R. H. Templer “Liquid—crystal templates for nanostructure metals’ Angew. Chem. Int. Ed. 36, 1315 (1997)
215. G. S. Attard, M. Edgar, and C. G. Goltner, “Inorganic nanostructures from lyotropic liquid crystal phase” Acta Mater. 46, 751 (1998)
216. G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. M. Elliot and J. R. Owen, “Lyotropic liquid crystalline properties of nonionic surfactant/H2O/hexachloroplatinic acid ternary mixtures used for the production of nanostructure platinum” Langmuir 14, 7340 (1998)
217. A. H. Whitehead, J. M. Elliot. J. R. Owen and G. S. Attard “ Electrodeposition of mesoporous tin fims” Chem. Commun. 331 (1999)
218. M. Elliott, G. S. Attard, P. N. Bartlett, N. R. B. Coleman, D. A. S. Merckel and J. R. Owen “Nanostructured Platinum (HI-ePt) Films : effects of electrodeposition conditions on the film properties” Chem. Mater. 11, 3602 (1999)
219. G. S. Attad, S. A. A. Leclerc, S. Maniguet, A. E. Russell, I. Nandhakumar and P. N. Bartlett “Mesoporous Pt/Ru alloy from the hexagonal lyotropic liquid crystalline phase of a nonionic surfactant” Chem. Mater. 13, 1444 (2001)
220. G. S. Attard, S. A. A. Leclec, S. Maniguet, A. E. Russell, I. Nandhakumar, B. R. Gollas and P. N. Bartlett “Liquid Crystal Phase Templated Mesoporous Platinum Alloy” Microporous. Mesoporous Mat. 44, 159 (2001)
221. I. Nandhakumar, J. M. Elliot and G. S. Attard, “ Electrodepostion of Nanostructured Mesoporous Selenium Films (H-I-eSe)” Chem. Mater. 13, 3840 (2001)
222. P. A. Nelson, J. M. Elliott, G. S. Attard and J. R. Owen, “Mesoporous nikel/nickel-a nanoarchitectured electrode” Chem. Mater. 14, 524 (2002)
223. H. Bönneman and R. M. Richards, “Nanoscopic Metal Particles- Synthetic Methods and Potential Applications” Eur. J. Inorg. Chem., 2455 (2001)
224. K. E. Gonsalves, S. P. Rangarajan and J. Wang, in Handbook of Nanostructured Materials and Nanotechnology edited H. S. Nalwa, Academic Press, San Diego (2000), Vol. 1, p. 15.
225. J. K. N. Mbindyo, T. E. Mallouk, J. B. Mattzela, I. Kratochvilova, B. Razavi, T. N. Jackson, and T. S. Mayer “Templates Syntehesis of Nanowires Containing Monolayer Molecular Junstions” J. Am. Chem. Soc. 124, 4020 (2002)
226. C. T. Kresge, M. E. Leonow, W. J. Toth, J. C. Vartuli and J. S. Beck, “Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanlism” Nature 359, 710 (1992)
227. B. Lindlar, A. Kogelbauer, P. J. Kooyman and R. Prins “Synthesis of Large pore solica with a narrow pore size distribution” Microporous Mesoporous Mat. 44, 89 (2001)
228. A. F. Gross, E. J. Ruiz, V. H. Le and S. H. Tolbert, “The role of Silica chemistry in controlling phase transitions in silica/surfactant composite materials” Microporous Mesoporous Mat. 44, 785 (2001)
229. A. C. Voegtlin, A. Marijasic, J. Patarin, C. Satuerland, Y. Grillet and L. Huve, “Room-temperature synthesis of silicate mesoporous MCM-41-type materials: Influence of the synthesis pH on the porosity of the materials obtained” Microporous Mater. 10, 137 (1997)
230. S. A. El-safty and J. Evans “Fromation of high ordered mesoporous silica materials adoping lyotropic liquid crystal mesophase” J. Mater. Chem. 12, 117 (2002)
231. A. Firouzi, D. Kumar, L. M. Bull, T. Besier, P. Sieger, Q. Huo, S. A. Walker. J. A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G. D. Stucky and B. F. Chemlka “Cooperative Organization of Inorganic-Surfactant and Biomimetic Assembles” Science 267, 1138 (1995)
232. L. Z. Wang, J. L. Shi, W. H. Zhang, D. S. Yang “Temperature Control in the Synthesis of Cubic mesoporous silica materials” Mater. Letter. 45, 273 (2000)
233. C. F. Cheng, W. Z. Zhou, D. H. Park, J. Klinowski, M. Hargreaves and L. F. Gladden “Controlling the channel diameter of the mesoporous molecular sieve MCM-41” J. Chem. Soc. Faraday Trans. 93, 359 (1997)
234. C. F. Cheng, D. H. Park and J. Klinowski “Optimal parameters for the Synthesis molecular sieve [Si]-MCM-41” J. Chem. Soc. Faraday Trans. 93, 193 (1997)
235. H.-P. Lin, Y.-R. Cheng, S.-B. Liu and C.-Y. Mou, “The effect of alkan-1ols addition on the structural ordering and morphology of mesoporous silicate MCM-41” J. Mater. Chem. 9, 1197 (1999)
236. P. M. Ajayan, “Nanotubes from Carbon” Chem. Rev. 99, 1787 (1999)
237. H. Ringsodrf, B. Schlab and J. Venzmer “Molecular Architecture and Function of Polymeric Oriented Systems: Models for the Study of Organization, Surface Recognition, and Dynamics of Biomemebranes” Angew. Chem. Int. Ed. Engl. 27, 113 (1988)
238. C. A. Mirkin, R. L. Letsinger, R. C. Mucic and J. J. Storhoff “A DNA-based method for rationally assembling nanoparticles into macroscopic materials” Nature 382, 607 (1996)
239. J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin and R. L. Letsinger “One-pot Colorimetric differentiation of polynucleotides with singlr base imperfections using gold nanoparticles” J. Am. Chem. Soc. 120, 1959 (1998)
240. R. C. Mucic, J. J. Storhoff, C. A. Mirkin and R. L. Letsinger “DNA-directed synthesis of binary nanoparticle network materials” J. Am. Chem. Soc. 120, 12674 (1998)
241. J. J. Storhoff and C. A. Mirkin “ Programmed materials synthesis with DNA” Chem. Rev. 99, 1849 (1999)
242. J. J. Storhoff, A. A. Lazarides , R. C. Mucic, C. A. Mirkin, R. L. Letsinger and G. C. Schatz “What controls the Optical properties of DNA-linked gold nanoparticles” J. Am. Chem. Soc. 122, 4640 (2000)
243. C. A. Mirkin, “Programming the Assembly of Two and Three dimensional architectures with DNA and nanoscale inorganic building blocks” Inorg. Chem. 39, 2258 (2000)
244. T. A. Taton, R. C. Mucic, C. A. Mirkin and R. L. Letsinger “The DNA-mediated formation of mono- and mutilayered nanoparticle structures” J. Am. Chem. Soc. 122, 6305 (2000)
245. T. A. Taton, C. A. Mirkin and R. L. Letsinger “Scanometric DNA array detection with nanopartcle probes” Science 289, 1757 (2000)
246. S. J. Park, A. A. Lazarides, C. A. Mirkin, P. W. Brazis, C. R. Kannewurf and R. L. Letsinger “The electrical properties of gold nanoparticles assemblies linked by DNA” Angew. Chem. Int. Ed. 39, 3845 (2000)
247. T. A. Taton, G. Lu and C. A. Mirkin “Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes” J. Am. Chem. Soc. 123, 5164 (2001)
248. S. J. Park, A. A. Lazardes, C. A. Mirkin and R. L. Letsinger “Directed assembly of periodic materials from protein and oligonucleotide modified nanoparticle building blocks” Angew. Chem. Int. Ed. 40, 2909 (2001)
249. S. J. Park, T. A. Taton and C. A. Mirkin “Array-based electrical detection of DNA with nanoparticle probes” Science 295, 1503 (2002)
250. A. P. Alivisato, K. P. Johnson, X. G. Peng, T. X. Wilson, C. J. Loweth, M. P. Bruchez and P. G. Schultz “Organization of ‘nanocrystal molecules’ using DNA” Nature 382, 609 (1996)
251. C. J. Loweth, W. B. Caldwell, X. G. Peng, A. P. Alivisatos and P. G. Schultz “DNA-based assembly of gold nanocrystals” Angew. Chem. Int. Ed. 38, 1808 (1999)
252. E. Barun, Y. Eichen, U. Sivan, G. Ben-Yoswgh “DBA-templated assembly and electrode attachement of a coducting silver wire” Nature 391,755 (1998)
253. J. Richter, R. Seidel, R. Kirsch, M. Mertig, W. Pompe, J. Plaschke, H. K. Schackert “Nanoscale palladium metallization of DNA” Adv. Mater. 12, 507 (2000)
254. J. Richter, M. Mertig, W. Pompe, I. Monch, H. K. Schackert, “Contruction of highly conductive nanowires on a DNA template” Appl. Phys. Lett. 78, 536 (2001)
255. M.Sastry, N. Lala, V. Patil, S. P. Chavan, and A. G. Chittiboyina “Optical Absorption Study of the Biotin-Avidin Interaction on the Colloidal Silver and gold Particles” Langmuir 14, 4138 (1998)
256. W. Shenton, S. A. Davis, and S. Mann, “Directed Self-Assembly of Nanoparticles into Macroscopic Materials Using Antibody-Antigen Recognition” Adv. Mater. 11, 449 (1999)
257. S. Connoly and D. Fitzmaurice, “Programmed Assembly of Gold Nanocrystals in Aqueous Solution” Adv. Mater. 11, 1202 (1999)
258. C.M. Niemeyer, “Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science” Angew. Chem. Int. Ed. 40, 4128 (2001)
259. G. Bauer, F. Pittner, and Th. Schalkhammer, “Metal Nano-Cluster Biosensor” Mikrochim. Acta 131, 107 (1999)
260. E. Winfree, F. Liu, L. A. Wenzler and N. C. Seeman, “Design and Self-assembly of Two-dimensional DNA Crystals” Nature 394, 539 (1998)
261. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin “Selectrive Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Opticl Properties of Gold Nanoparticles” Science 277, 1078 (1997)
Chapter 2 Reference
[1] S. Mann, Nature 365, 499 (1993).
[2] M. Li, H. Schnablegger, S. Mann, Nature 402, 393 (1999).
[3] S. I. Stupp, V LeBonheur, K. Walker, L. S. Li, K. E. Huggins, M. Keser, A. Amstutz, Science 276, 384 (1997).
[4] M. T. Reetz, W. Helbig, S. A. Quaiser, U. Stimming, N. Breuer, R. Vogel, Science 267, 367 (1995).
[5] A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell, V. M. Rotello, Nature 404, 746 (2000).
[6] A. P. Alivisatos, K. P. Johnsson, X. G. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez, P. G. Schultz, Nature 382, 609 (1996).
[7] A. Taleb, C. Petit, M.P. Pileni, Chem. Mater. 9, 950 (1997).
[8] A. Badia, W. Cao, S. Singh, L. Demers, L. Cuccia, L. Reven, Langmuir 12, 1262 (1996).
[9] Z. Zhang et al., J. Phys. Chem. B 104, 1176 (2000).
[10] K. Naka, M. Yaguchi, Y. Chujo, Chem. Mater. 11, 849 (1999).
[11] S. Ayyaooan, R. S. Gopalan, G. N. Subbanna, C.N.R. Rao, J. Mater. Res. 12, 398 (1997).
[12] L. M. Liz-Marzan, I. Lado-Tourino, Langmuir 12, 3585 (1996).
[13] T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. El-Sayed, Science 272, 1924 (1996).
[14] A. B. R. Mayer, J. E. Mark, S. H. Hausner, J. Appl. Polym. Sci. 70, 1209 (1998).
[15] C. J. Kiely, J. Fink, M. Brust, D. J. Schifferin, Nature 396, 444 (1998).
[16] R. P. Andres J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, R. G. Osifchin, Science 273, 1690 (1996).
[17] C. P. Collier, R, J. Sakally, J. J. Shiang, S.E. Henrichs, J. R. Heath, Science 277, 1978 (1997).
[18] C. Petit, A. Taleb, M.P. Pileni, Adv. Mater. 10,259 (1998).
[19] W. M. Linfield, Surfactant Science Series-Anionic Surfactants (Marcel Dekker, New York, 1976), vol. 7, chap. 5. The “alcohol surfactant”: the surfactant is prepared from the sulfation of the different alcohol.
[20] H.P. Lin, C. Y. Mou, Science 273, 765 (1996).
[21] H. P. Choo, K. Y. Liew and H. Liu “Factors affecting the size of polymer stabilizing Pd nanoparticles” J. Mater. Chem. 12, 934-937 (2002)
[22] M. N. Vargafik, N. Y. Kozitsyna, N. V. Cherkashima, R. I. Rudy, D. I. Kochubey, and I. I. Moieev, in Metal Clusters in Chemistry Volume 3, Chapter 4.5, edited by P. Braunstein, L. A. Oro and P. R. Raithby, Wiley-Vch, Weinheim (1999)
[23] A. Miyazaki, I. Balint, K.-i. Aika and Y. Nakano “Preparation of Ru Nanoparticles Supported on γ-Al2O3 and its Novel Catalytic activity for Ammonia synthesis” J. Catal. 204, 364-371 (2001)
chapter 3 Reference
1. (a) I. Lisiecki and M. P. Pileni, “Synthesis of copper metallic clusters using reverse micelles as microreactors” J. Am. Chem. Soc. 115, 3887 (1993) (b) M. T. Reetz, W. Helbig, S. A. Quaiser, U. Simming, N. Breuer and R. Vogel, “Visualization of surfactants on Nanostrectured Palladium Clusters by a Combination of STM and High-resolution TEM” Science 267, 367 (1995) (c) G. S. Attard, P. N. Barlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen and J. H. Wang “ Mesoporous Platinum Films lyotropoc liquid crystalline phase” Science 278, 838 (1997)
2. (a) C. A. Mirkin, R. L. Letsinger, R. C. Mucic and J. J. Storhoff “A DNA-based method for rationally assembling nanoparticles into macroscopic materials” Nature 382, 607-609 (1996) (b) T. A. Taton, C. A. Mirkin and R. L. Letsinger “Scanometric DNA array detection with nanopartcle probes” Science 289, 1757-1760 (2000) (c) A. P. Alivisato, K. P. Johnson, X. G. Peng, T. X. Wilson, C. J. Loweth, M. P. Bruchez and P. G. Schultz “Organization of ‘nanocrystal molecules’ using DNA” Nature 382, 609-611 (1996)
3. (a) A. K. Boal, F. Iihan, J. E. DeRouchey, T. Thun-Albrecht, R. P. Russell and V. M. Rotello “Self-assembly of nanoparticles into structured spherical and network aggregates” Nature 404, 746-748 (2000) (b) P. Jiang, J. F. Bertone and V. L. Colvin “A lost-wax approach to monodisperse colloids and their crystals” Science 291, 453-457 (2001) (c) T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein and M.A. El-Sayed “Shape-controlled synthesis of colloidal platinum nanoparticles” 272, 1924-1926 (1996)
4. (a) M. Brust; M. Walker; D. Bethell; D. J. Schiffrin; R. Whyman J. Chem. Soc. Chem. Commun. 801-802 (1994) (b) M. Brust; J. Fink; D. Bethell; D. J. Schiffrin; C. J. Kiely Chem. Soc. Chem. Commun. 1655-1656 (1995) (c) M. Brust; D. Bethell; D. J. Schriffin; C. J. Kiely Adv. Mater 7, 795-797 (1995) (d) M. Brust; D. Bethell; C. J. Kiely; D. J. Schiffrin Langmuir 14, 5425-5429 (1998)
5. (a) M. J. Hostetler; S. J. Green; J. J. Stokes; R. W. Murray J. Am. Chem. Soc. 118, 4212-4213 (1996) (b) M. J. Hostetler; C. J. Zhong; B. K. Yen; J. Anderegg; S. M. Gross; N. D. Evans J. Am. Chem. Soc. 120, 9396-9397 (1998) (c) Y. Shon; S. M. Gross; B. Dawson; M. Porter; R. W. Murray Langmuir 16, 6555-6561 (2000) (d) S. Chen; A. C. Templeton; R. W. Murray Langmuir 16, 3543-3548 (2000) (e) D. E. Cliffel; F. P. Zamborini; S. M. Gross; R. W. Murray Langmuir 16, 9699-9702 (2000) (f) J. F. Hicks; F. P. Zamborini; A. J. Osisek; R. W. Murray J. Am. Chem. Soc. 123, 7048-7053 (2001) (g) W. P Wuelfing.; F. P. Zamborini; A. C. Templeton; X. Wen; H. Yoon; R. W. Murray Chem. Mater. 13, 87-95 (2001) (h) F. P. Zamborini; S. M. Gross; R. W. Murray Langmuir 17, 481-488 (2001)
6. A. Kumar; A. B. Mandale; M. Sastry Langmuir 16, 9299-9302 (2000)
7. K.V. Sarathy; G. U. Kulkarni; C. N. R. Rao Chem. Commun. 537-538 (1997)
8. D. Zanchet; B. D. Hall; D. Ugrate J. Phys. Chem. B 104, 11013-11018 (2000)
9. A. Badia; W. Gao; S. Singh; L. Demers; L. Cuccia; L. Reven Lagmuir 12, 1262-1269 (1996)
10. N. Lala; S. P. Lalbegi; S. D. Adyanthaya; M. Sastry Langmuir 17, 3766-3768 (2001)
11. S. A. Harfenist; Z. L. Wang; M. M. Alvarez; I. Vezmar; R. L. Whetten J. Phys. Chem. 100, 13904-13910 (1996)
12. T. Yonezawa, S. Onoue ; N. Kimizuka Adv. Mater. 13, 140-142 (2001)
13. K. V. Sarathy; G. Raina; R. T. Yadav; G. U. Kulkarni; C. N. R. Rao J. Phys. Chem. B 101, 9876-9880 (1997)
14. J. Alvarez; J. Liu; E. Roman; A. E. Kaifer Chem Commun 1151-1152 (2000)
15. S. Chen; K. Huang; J. A. Stearns Chem. Mater. 12, 540-547 (2000)
16. C. L. Lee, C. C. Wan and Y. Y. Wang “Synthesis of Metal nanoparticles via self-regulated reduction by an alcohol surfactant” Adv. Funct. Mater. 11, 344-347 (2001)
Chapter 4. Reference
1. S. Abe, M. Ohkubo, T. Fujinami and H. Honma, Trans IMF 76, 12 (1998).
2. H. Meyer, R. J. Nichols, D. Schröer and L. Stamp, Electrochimica Acta 39, 1325 (1994).
3. Y. Schacham-Diamand, V. Dubin and M. Angyal Thin Solid Film 262, 93 (1995)
4. J. P. O’Kelly, K. F. Mongery, Y. Gobil, J. Torres, P. V. Kelly and G. M. Grean Microelectron. Eng. 50, 473 (2000).
5. H. Akahoshi, M. Kawamoto, T. Itabashi, O. Miura, A. Takahashi, S. Kobayashi, M. Miyazaki, T. Mutoh, M. Wajima and T. Ishimaru, IEEE Trans. Comp., Packag. Manufact. Technol.-part a 18, 127 (1995)
6. H. H. Hsu, C. W. Teng, S. J. Lin and J. W. Yeh, J. Electrochem. Soc., 149, c134 (2002)
7. K. G. Mishra and R. K. Paramguru, Metall. Mater. Trans. B 30b, 223 (1999)
8. T. M. Tam, J. Electrochem. Soc., 132, 806, (1985)
9. M. Wanner, H. Wiese and K. G. Weil, Ber. Bunsenges. Phys. Chem. 92, 736 (1988)
10. M. Paunovic, J. Electrochem. Soc. 124, 349, (1977)
11. Z. Jusys, R. Pauliukaité and A. Vaškelis, Phys. Chem. Chem. Phys. 1, 313 (1999)
12. R. L. Cohen and K. W. West, Chem. Phys. Letters 16, 128 (1972)
13. M. Froment, E. Queau, J. R. Martin and G. stremsdoerfer, J. Electrochem. Soc. 142, 3373 (1995)
14. T. Osaka and H. Takematsu, J. Electrochem. Soc. 127, 1021 (1980)
15. J. Horkans, J. Electrochem. Soc. 130, 311 (1983)
16. E. E. Kalu, Plating surf. finish. 62 (2000)
17. T. M. Tam, J. Electrochem. Soc., 132, 1152, (1985)
18. E. J. M. O’sullivan, J. Horkans, J. R. White and J. M. Roldan, IBM J. Res, Develop. 32, 591 (1988)
19. Z. Xu, F.-S Xiao, S. K. Purnell, O. Alexeev, S. Kawi, S. E. Deutsch and B. C. Gates, Nature 372, 346 (1994)
20. A. J. Zarur and J. Y. Ying, Nature 403, 65 (2000)
21. C. P. Collier, F. J. Saykally, J. J. Shiang, S. E. Henrichs and J. R. Heath, Science 277, 1978 (1997)
22. C. L. Lee, C. C. Wan and Y. Y. Wang, Adv. Funct. Mater.11, 344 (2001)
23. C. L. Lee and C. C. Wan, U.S. Patent, submitted (2001).
24. M. T. Reetz, W. Helbig, S. A. Qualser, U. Stimming, N. Breuer and R. Vogel, Science 267, 367 (1995)
25. , where d is particle’s diameter,α is a geometric factor, λ is X-ray wavelength (1.54 Å), and β is the half-width of the diffraction peak at the angle 2θ. P. Scherrer, Nachr. Königl. Ges. Wiss. Gottingen, Math,-Phys. Klasse 98 (1918). Taylor, A. X-ray Metallography; Wiley & Sons, New York (1961)
26. A. J. Bard and L. R. Faulkner, Electrochemical Methods, P. 725, John Wiley & Sons, New York (2001)
27. J. F. Hamilton and R. C. Baetzold, Science 205, 1213 (1979)
28. M. Paunovic and M. Schlesinger, Fundamentals of Electrochemical Deposition, P. 151, John Wiley & Sons, New York (1998)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top