跳到主要內容

臺灣博碩士論文加值系統

(18.204.56.185) 您好!臺灣時間:2022/08/14 02:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃存玄
研究生(外文):Tsun-Hsuan Huang
論文名稱:利用相間轉移觸媒進行有機化合物氧化反應之研究
論文名稱(外文):STUDY ON THE OXDIATION REACTIONS OF ORGANIC COMPOUNDS BY PHASE TRANSFER CATALYSIS
指導教授:王茂齡吳文騰
指導教授(外文):Maw-Ling WangWen-Teng Wu
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:343
中文關鍵詞:相間轉移觸媒氧化環氧化過氧化氫次氯酸鈉共觸媒
外文關鍵詞:phase transfer catalysisoxidationepoxidationhydrogen peroxidesodium hypochloritecocatalyst
相關次數:
  • 被引用被引用:1
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要是利用相間轉移觸媒進行有機化合物之氧化反應,內容分為二部份,第一部份為環氧化反應;另一部份則為氧化反應。在環氧化反應系統中,我們使用不同的有機烯烴類(olefins)當作反應物,利用過氧化氫(hydrogen peroxide)作為氧化劑,進行環氧化反應,將C=C雙鍵環氧化成功。所得到之環氧化產物(epoxide)可應用於潰瘍的治療、清潔劑的製造、聚氯乙烯樹脂的穩定化和環氧樹脂單體的製造等。在氧化反應系統中,則是利用次氯酸鈉(sodium hypochlorite)為氧化劑,對苯甲醇(benzyl alcohol)進行氧化反應,得到產物苯甲醛(benzaldehyde),為醫藥、染料、香料和樹脂工業的重要原料。
本論文利用相間轉移觸媒技術改善二相不互溶的狀況,不論是環氧化或氧化反應均能在溫和的反應條件下,獲得極高的產率和選擇率。除此之外,深入探討環氧化反應和氧化反應兩相系統之反應機構、動力學行為和不同操作條件對反應之影響。由研究中獲得各項結論,分別敘述如下:
環氧化反應方面:
(1) 利用過氧化氫為氧化劑,鎢酸鈉和磷酸為共觸媒,再加上相間轉移觸媒改善因二相不互溶所造成反應速率欠佳之現象。此方法對於環上的C=C雙鍵具有良好的環氧化能力,但並不適用在直鏈有機化合物上的C=C雙鍵。為了使得直鏈上的C=C雙鍵能夠有較好的方法可以進行環氧化反應,於是本文改用磷鎢酸為共觸媒,對1,7-octadiene進行環氧化反應。由於磷鎢酸所能攜帶的氧原子較多,所以在環氧化直鏈C=C雙鍵上,能有較為傑出的表現。
(2) 在本文中所研究的三種環氧化反應系統中,由於水相反應屬於離子交換反應,且當轉速達到某一數值以上,相間轉移觸媒在兩相界面的質傳為一定值,且二相間的質傳速率遠小於有機相的化學反應。故有機相之反應為整個反應系統之速率決定步驟。且根據動力學之數據顯示,反應符合虛擬一次反應模式(pseudo first order reaction)。
(3) 由於有機相反應物結構各有不同,故在動力學上的推導也各有不同。在5-vinyl-2-norbornene反應系統中,只對環上之C = C雙鍵進行環氧化反應,故有機相反應式較為簡單,所求得之視活化能為11.43 kcal/mol(以二氯乙烷溶劑為例)。在dicyclopentadiene系統中,其C = C雙鍵分別位於不同的環上位置,故有機相反應為先進行並聯反應(parallel reaction),再分別進行串聯反應(series reaction),故其活化能有四,分別為Ea,1 = 6.84 kcal/mol、Ea,2 = 6.87 kcal/mol、Ea,3 = 7.76 kcal/mol和Ea,4 = 6.53 kcal/mol。1,7-octadiene系統中,為一對稱之結構,故反應為一串聯反應(series reaction),其視活化能為Ea,1 = 11.40 kcal/mol、Ea,2 = 12.17 kcal/mol。
在氧化反應方面
(1) 選用的氧化劑為次氯酸鈉,但是需將強鹼性的次氯酸鈉水溶液不易與相間轉移觸媒產生離子交換反應,而傳送至有機相參與反應。在本文中,我們利用濃硫酸和緩衝液降低pH值至適當之範圍或是加入碳酸氫鈉與次氯酸鈉反應,有效地改善次氯酸在強鹼環境中不易與相間轉移觸媒產生離子交換之困難。
(2) 在動力學方面,以動力學數據趨近,發現本反應之反應階數(order)為zeroth order。並求得反應之視活化能為13.06 kcal/mol。
The primary objective of this dissertation is to study the oxidation of organic compounds which include epoxidation of olefin and oxidation of alcohol by phase transfer catalyst. The phase transfer catalytic epoxidation of various olefins using the hydrogen peroxide as oxidant in an organic/aqueous two-phase medium was investigated. Epoxides are widely used in various industries, such as curing the ulcer, manufacturing of cleaning reagent, stabilizing polychloroethyl resin and monomer of the epoxy resins etc.. Using sodium hypochlorite as the oxidant, benzaldehyde which is widely used in the industries of medicine, dyestuff, perfume and resin was obtained as the main product from benzyl alcohol via oxidation.
The purpose of this study is to use the phase transfer catalytic technique to solve the problems of two-phase reactions. High yield and high selectivity were obtained even at moderate conditions both in epoxidations and oxidation. The reaction mechanism, kinetics and the operating factors which affect the reactions and yields were discussed. The conclusions were obtained :
Epoxidation reaction:
(1) In this work, sodium tungstate and phosphoric acid were used as the cocatalyst, and hydrogen peroxide was used as the oxidant agent. The phase transfer catalyst added was to improve the rate of reaction which directly takes place in the two immiscible solutions. The phase transfer catalytic technique exhibits the excellent epoxidation of the C = C double bonds on the ring (e.g., 5-vinyl-2-norbornene and dicyclopentadiene), but not promise epoxidation of the C = C double bond on the end-chain (1,7-octadiene). In order to elevate the epoxidation of the C = C double bond on 1,7-octadiene, the reaction is greatly improved by adding phosphotungstic acid by carrying more oxygen atoms from aqueous phase to organic phase.
(2) In carrying these epoxidations, the ion-exchange and the complex reaction take place in the aqueous phase. In general, both ion-exchange and complex reaction in the aqueous phase are all rapid. Therefore, the transfer rate of phase transfer catalyst between two phases keeps at a constant value when the agitation speed reaches an appropriate level. Under this circumstance, the organic-phase reaction is a rate-controlling step. Based on the experimental data, a pseudo first order rate law is sufficient to describe the kinetic behavior.
(3) The derivation kinetic model is dependent on the structure of the organic-phase reactants. Only one C = C double bond on 5-vinyl-2-norbornene is epoxided. Therefore, the kinetic model is relatively simple. The apparent activated energy of the epoxidation of 5-vinyl-2-norbornene in dichloroethane/water two phase system is 11.43 kcal/mole. Nevertheless, there are two C = C double bonds on dicyclopentadiene. These two C = C double bonds are epoxided through series and parallel reactions. The four apparent activated energies obtained are Ea,1 = 6.84 kcal/mol、Ea,2 = 6.87 kcal/mol、Ea,3 = 7.76 kcal/mol and Ea,4 = 6.53 kcal/mol, respectively. Further, there are two C = C double bonds on the 1,7-octadiene molecule. Therefore, a series reaction from which these two C = C double bonds are epoxided. The apparent activated energies are Ea,1 = 11.40 kcal/mol、Ea,2 = 12.17 kcal/mol, respectively.
Oxidation reaction :
(1) In this work, sodium hypochlorite was used as the oxidant agent. The reaction is usually low because it is difficult to proceed the ionic exchange between sodium hypochlorite and phase transfer catalyst under strong alkalinity. In this work, the reaction is greatly improved by carrying out the reaction in acidic solution with the addition of concentrated sulfuric acid, buffer solution or sodium bicarbonate.
(2) In kinetic study, it is found that a zeroth order is sufficient to describe the reaction behavior. The apparent activated energy is 13.06 kcal/mol.
中文摘要 i
英文摘要 iii
目錄 vi
圖目錄 ix
表目錄 xx
符號說明 xxiii
第一章 緒論 1
1.1相間轉移觸媒之介紹 1
1.2相間轉移觸媒的發展應用與反應類型 3
1.3相間轉移觸媒之分類 5
1.4相間轉移觸媒之反應機構 9
1.5關於觸媒的回收和分離方面 12
1.6 研究大綱及目的 13
第二章 實驗之藥品與儀器 16
2.1 實驗藥品 16
2.2 實驗儀器 18
2.3 分析儀器 18
第三章5-乙烯基-2-冰片烯之動力學研究 20
3.1 前言 20
3.2 5-乙烯基-2-冰片烯動力學實驗 25
3.3 2,3-Epoxy-5-vinyl-norbornan合成與鑑定 26
3.4 活性觸媒中間體[四(二過氧鎢酸)]磷酸三(四丁基銨) (Tri-uaternaryammonium tetra-(diperoxotungsto) phosphate)之合成與鑑定 32
3.5 環氧化反應機構及動力推導 40
3.6 實驗結果與討論 46
3.7 結論 100
第四章 二環戊二烯之動力學研究 102
4.1 二環戊二烯動力學實驗 103
4.2環氧化反應機構及動力推導 120
4.3 實驗結果與討論 126
4.4 結論 180
第五章 各種反應物環氧化反應之比較 183
5.1研究目的 183
5.2 實驗方法 183
5.3 產物合成與鑑定 184
5.4實驗結果與討論 225
第六章 1,7-辛二烯環氧化之動力學研究 229
6.1 1,7-辛二烯動力學實驗 229
6.2環氧化反應機構及動力推導 235
6.3 實驗結果與討論 241
6.4 結論 280
第七章 苯甲醇氧化反應之動力學研究 282
7.1 前言 282
7.2 苯甲醇環氧反應實驗 285
7.3 氧化反應機構及動力學推導 286
7.4 實驗結果與討論 297
7.5 結論 332
第八章 結論與展望 334
8.1 結論 334
8.2 展望 338
參考文獻 339
1. F. M. Menger, “Reactivity of Organic Molecules at Phase Boundaries”, Chem. Soc. Rev. 1, 229-235 (1972).
2. J. Jarrouse and C. R. Hebd, “The Influence of Quaternary Ammonium Chloride on the Substituted Chlorine Derivatives”, Seances Acad. Sci., Ser. C232, pp.1424~1426 (1951).
3. M. Makosza and E. Bialecka, “Reactions of Organic Anions XXXVI. Catalytic Method of preparation of 1-Chloro-1-phenylthiocyclo- propane Derivtives in Aqueous Medium”, Tetrahedron Letters, pp.4517~4518 (1971).
4. C. M. Starks, C. Liotta and M. Halpern, " Phase Transfer Catalysis, Fundamentals, and Industrial Perspectives ", Chapman & Hall, New York (1994).
5. W. P. Weber and G. W. Gokel, " Phase Transfer Catalysis in Organic Synthesis ", Springer-Verlag, Berlin Heidelberg, New York (1977).
6. H. H. Freedman, “Industrial Applications of Phase Transfer Catalysis (PTC):Past, Present and Future”, Pure & Appl. Chem., 58(6), pp.857-868 (1984).
7. E. V. Dehmlow and S. S. Dehmlow, " Phase Transfer Catalysis ", Monographs in Mordern Chemistry, Vol. 11,Verlag Chemie, Weinheim (1983).
8. S. Quici and S. L. Regen, " Evidence for Solid-Liquid Phase-Transfer Catalysis ", J. Org. Chem., 45, pp. 1700-1701 (1980).
9. E. Angeletti, P. Tundo, P. Venturello and F. Trotta, “Synthetic Opportunities of Gas-Liquid Phase-Transfer Catalysis”, Brithish Ploymer J., 16, pp. 219-221 (1984).
10. S. L. Regen, “Triphase Catalysis”, Angew. Chem. Int. Ed. Engl., 18(6), pp. 421-429 (1979).
11. H. Kobayashi and T. Sonoda, “The First Application of Anion-Catalyzed Phase-Transfer Catalysis to Friedel-Crafts Alkylation”, Chemistry Letters, pp. 1185-1186 (1982).
12. H. Iwamoto, “A facile in-situ Diazo-Coupling Reactions under Two-Phase Conditions Catalyzed by Tetrakis [3,5-Bis(Trifluoromethyl)Phenyl]Borate”, Tetrahedron Letters, 24, pp. 4703-4706 (1983).
13. A. W. Herriott and D. Picker, “Phase Transfer Catalysis. An Evaluation of Catalysts”, J. Am. Chem. Soc., 97, pp. 2345-2349 (1975).
14. A.Brandstrom, “Principles of Phase-Transfer Catalysis by Quaternary Ammonium Salts”, Adv. Phys. Org. Chem., 16, pp. 267-330 (1977).
15. H. E. Hennis, J. P. Easterly, R. Collins and L. R. Thompson, “Esters from Reactions of Alkyl Halides and Salts of Carboxylic Acids. Reactions of Primary Alkyl Chlorides and Sodium Salts of Carboxylic Acids” , Ind. Eng. Chem. Prod. Res. Dev. 6, pp. 193-195 (1967).
16. J. Smid, L. L. Chan and K. H. Wong, “Complexation of lithium, sodium, and potassium carbanion pairs with polyglycol dimethyl ethers (glymes). Effect of chain length and temperature”, J. Am. Chem. Soc., 92, pp. 1955-1963 (1970).
17. C. M. Starks, M. E. Halpern and C. Liotta, “Phase-Transfer Catalysis”, Academic Press, New York (1994).
18. G. Bram, “Anionic Activation by Solid Liquid-Phase Transfer Catatlysis Without Solvent - An Improvement in Organic-Synthesis”, Isr. J. Chem. 26, pp. 291-298 (1985).
19. G. E. Boyd and Q. V. Larson, “Binding of quaternary ammonium ions by polystyrenesulfonic acid type cation exchangers”, J. Am. Chem. Soc., 89, pp. 6038-6042 (1967).
20. H. Ledon, “An Improved Preparation of α-Diazocarbonyl Compounds”, Synthesis, 347-348 (1974).
21. K. Sjoberg, Aldrichim. Acta, 13, 55 (1980).
22. B. C. Berris, “Phase Transfer Catalyst Recover”, US. Pat. 5030757 (1991).
23. E. M. Taracon, “Phase Transfer Catalyst Recover”, Span. Pat. ES-1023606.
24. D. Brunelle, “Phase Transfer Catalyst Recover”, US. Pat. 4363905 (1982).
25. H. Nanba, Jpn. Kokai Tokkyo Koho JP 63196549 (1988).
26. C. Venturello and R. D’Aloisio, “Quaternary Ammonium Tetrakis (diperoxotungsto) phosphate(3-) as a New Class of Catalysts for Efficient Alkene Epoxidation with Hydrogen Peroxide”, J. Org. Chem., 53, pp. 1553-1557 (1988).
27. A. Heumann, F. Chauvet and B. Weagell, Tetrahedron Letters, “Epoxidation with Molecular Oxygen in the Presence of PdCl(NO2)(CH3CN)2”, Vol. 23, No. 27, pp. 2767-1768 (1982).
28. Y. H. Kim, B. C. Chung, “Facile and Regioselective Epoxidations of Olefins with a Peroxysulfur Intermediate Generated from Superoxide Anion (O2-.) and Nitrobenzenesulfonyl Chlorides”, J. Org. Chem., 48, pp. 1562-1564 (1983).
29. Y. Ishii, K. Yamawaki, T. Ura, H. Yamada, T. Yoshida and M. Ogawa, “Oxidation of Olefins and Alcohols by Peroxo-Molybdenum Complex Derived from Tris(cetylpyridinium) 12-Molybdophosphate and Hydrogen Peroxide”, J. Org. Chem., pp. 1868-1870 (1987).
30. Y. Ishii, K. Yamawaki, T. Ura, H. Ymada, T. Yoshida, and M. Ogawa, “Hydrogen Peroxide Oxidation Catalyzed by Heteropoly Acids Combined with Cetylpyridinium Chloride: Epoxidation of Olifins and Allylic Alcohols, Ketonization of Alcohols and Diols, and Oxidative Cleavage of 1,2-Diols and Olefins”, J. Org. Chem., 53, pp.3587-3593 (1988).
31. H. Yoon, and C. J. Burrows, “Catalysis of Alkene by Nickel Salen Complexes Using NaOCl under Phase-Transfer Conditions”, J. Am. Chem. Soc., 110, pp.4087-4089 (1988).
32. A. Brandstrom, “Principles of Phase-Transfer Catalysis by Quaternary Ammonium Salts”, Adv. Phys. Org. Chem., 15, pp.276-329 (1977).
33. C. Aubry, , G. Chottard, N. Platzer, J. M. Bregeault, R. Thouvenot, F. Chauveau, C. Huet, and H. Ledon, “Reinvestigation of Epoxidation Using Tungsten-Based Precursors and Hydrogen Peroxide in a Biphase Medium”, Inorg. Chem., 30, pp. 4409-4415 (1991).
34. R. Kluge, M. Schulz, S. Liebsch, “Diastereoselective Epoxidatoin of Olifins by Organo Sulfonic Peracids, II.”, Tetrahedron, Vol. 52, No. 8, pp. 2957-2976 (1996).
35. F. M. Herman, F. O. Donald, G. O. Charles, T. S. Glenn, “Encyclopedia of chemical Technology”, Vol 9. (1980).
36. 歐陽承, 胡啟和,“現代有機化學’’, 69 (1988).
37. G. A. Lee, H. H. Freedman, “Phase Transfer Catalyzed Oxidations of Alcohols and Amines by Aqueous Hypochlorite”, Tetrahedron Lett., 20, pp.1641-1644 (1976).
38. G. A. Lee, H. H. Freedman, “Phase-Transfer Oxidations with Hypochlorite - Scope and Mechanism”, Israel J. Chem., 26, pp. 229-234 (1985).
39. S. Abramovici, R. Neumann, Y. Sasson, “Sodium Hypochlorite as Oxidant in Phase Transfer Catalytic Systems”, J. Mol. Catal., 29, pp. 299-303 (1985).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 謝鴻鈞(2000)台灣地區勞工福利的探討-兼論企業福利。勞資關係,18(12),27-39。
2. 盧智芳(1999)老闆、員工新關係。天下雜誌,221,154-165。
3. 蔡祈賢(2001)各國公務人員福利制度概要-美、英、日、中之現況。人事月刊,186,32-37。
4. 蔡宏昭(1989)企業福利的原則性探討。勞工行政,10,10-18。
5. 郭穎昌(1997)企業員工福利制度之經濟分析。中國文化大學勞工研究所碩士論文。
6. 許道然(1995b)論員工福利制度的規劃。空大行政學報,3,287-298。
7. 許道然(1995a)員工福利新猷---彈性福利制。空大行政學報,4,221-240。
8. 莊善任(1997)企業福利對企業內勞資關係的影響---以半導體為對象。中國文化大學勞工研究所碩士論文。
9. 徐文復(2000)中小企業推行電子商務入門。管理雜誌,313,100-101。
10. 施教裕(1991)薪酬福利對勞資關係之影響員工福利與僱佣關係之探討。勞工行政,44,42-48。
11. 周宏(2000)如何運用福利金為我們做更多事情。勞資關係,18(12),21-26。
12. 吳明儒(1998)從台灣中小企業結構限制探討勞工福利之發展。勞資關係,16(12),20-38。
13. 王麗真(1997)彈性福利---惠普公司以人為本。勞工行政,112,9-11。
14. 王麗容(1996)社會保險制度的建立與勞動者福利需求的變遷趨勢。勞資關係,15(3),16-27。
15. 王麗容(1993)企(職)業福利的雙元性格和其組織性功能。社會科學論叢,41,63-80。