跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/09/28 02:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊家銘
研究生(外文):Chia-Min Yang
論文名稱:中孔洞二氧化矽分子篩之表面改質與嵌入化學
論文名稱(外文):Functionalization and Inclusion Chemistry of Mesoporous Silicas
指導教授:趙桂蓉趙桂蓉引用關係
指導教授(外文):Kuei-Jung Chao
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:168
中文關鍵詞:中孔洞二氧化矽分子篩表面改質嵌入化學
外文關鍵詞:Mesoporous SilicaMolecular SieveFunctionalizationInclusion Chemistry
相關次數:
  • 被引用被引用:1
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
中孔洞分子篩在材料化學的應用上,佔有舉足輕重的地位。本論文針對其表面改質與嵌入化學,做一系列之研究。第一章序論對中孔洞二氧化矽分子篩及其表面化學與嵌入化學作一簡介,第二章則介紹氧化鐵奈米顆粒於MCM-41中之製備與鑑定。第三章為金屬奈米微結構於中孔洞二氧化矽中之合成,並對金屬奈米線於限制空間中的成長機制作研究。第四章則介紹如何製備具疏水性之二氧化矽中孔洞薄膜,及其於半導體產業中作為低介電材料的應用。
Molecularly templated mesoporous materials have played a prominent role in material chemistry since their discovery in the early nineties. Due to their ordered structure, uniform pore diameter in the nanometer range and variety of morphologies, these materials are expected to have potential in the development of nanotechnology. Two complementary topics on the applications of mesoporous materials are targeted. One is to modify the surface properties of mesoporous materials to have the desired functionality; the other is to make uniform and orderly arranged nanomaterials inside mesoporous materials. This thesis is intended to demonstrate our studies on both of the fields, corresponding to the functionalization and inclusion chemistry of mesoporous silica.
At the beginning of this thesis, an introduction of general backgrounds of mesoporous materials, their related chemistry and characterization techniques is given. In Chapter 2, iron oxide nanoparticles in MCM-41 have been prepared by decomposition and oxidation of hydrophobic iron precursor, ferrocene, incorporated in the templating surfactant micelles. The method was found to be effective to produce confined iron oxide nanoparticles almost exclusively inside the host MCM-41. The incorporation of ferrocene affects both the morphology and mesoscopic structure of MCM-41. The iron in the as-synthesized sample was found to be oxidized and decomposed in nitrogen at 300℃, then transformed into discrete tetrahedral Fe(III) center grafting on the pore wall after calcination at 600℃ in oxygen. Further heating at 800℃ in vacuum results in octahedral-coordinated, highly dispersed and uniform iron oxide nanoparticles inside the channels of MCM-41.
Chapter 3 describes a method of templating synthesis of metal nanostructures in functionalized mesoporous silicas. Strong electrostatic interaction between ionic metal precursors and charged functional groups on the pore surface enhances the incorporation amount of ionic metal precursors in the mesopores of the host silica. Besides, the distribution of metal ions in the functionalized host silica is very uniform. After reduction, various monometallic and bimetallic nanostructures including nanoparticles, nanowire bundles and nanowire networks can be templated synthesized. The morphology of metal nanostructure depends on the architecture of the host mesoporous silicas, the loading of ionic metal precursor and the intrinsic properties of the metal. In addition to their preparation, the formation mechanism of platinum nanowires in MCM-41 has also been studied. HREM studies show that the nanowires grow preferentially along <110> axes with preferred Pt(111) stacking on the pore walls of hexagonal-shaped channels of MCM-41.
In Chapter 4, mesoporous silica has been fabricated into film morphology by spin coating a mixture of triblock copolymer and silica sol solution on silicon wafer. A method of in-situ derivatization of silica sol solution is applied to modify the sol to become hydrophobic. The resulting hydrophobic mesoporous silica film has smooth surface and controllable thickness. The film exhibits low dielectric constant in the range of 1.42 to 2.50, which is applicable as interconnect insulator in semiconductor industry for current and future technology nodes. It also meets practical IC process requirements including low process temperature, high thermal and dielectric stability and reliable mechanical properties. Post synthetic processes, including vapor phase reactions and plasma treatments, have also been studied, which are found to stabilize the dielectric properties of the silica films.
Chapter 1. Introduction 1
1.1 Mesoporous materials 2
1.1.1 Formation mechanism of mesorporous materials 3
1.1.2 Morphology control of mesoporous materials 8
1.2 Functionalization of mesoporous materials 10
1.3 Inclusion chemistry 16
1.4 Characterization techniques 19
1.4.1 Transmission electron microscope 19
1.4.2 X-ray diffraction 23
1.4.3 X-ray absorption spectroscopy 26
1.5 References 37
Chapter 2. Iron oxide nanoparticles in MCM-41 47
2.1 Background 47
2.2 Experimental 49
2.2.1 Preparation procedures 49
2.2.2 Characterization 49
2.3 Results and discussion 50
2.3.1 Morphology 50
2.3.2 Mesoscopic structure 52
2.3.3 TEM investigation 54
2.3.4 X-ray absorption spectroscopy measurements 56
2.3.5 EPR studies 59
2.4 Summary 62
2.5 References 63
Chapter 3. Metal nanostructures in mesoporous silicas 65
3.1 Background 65
3.2 Experimental 69
3.2.1 Syntheses of host mesoporous silicas 69
3.2.2 Preparation of metal nanostructures 70
3.2.3 Characterizations 71
3.3 Results and discussion 73
3.3.1 Functionalization of host mesoporous silicas 73
3.3.2 Preparation of Au nanowires in MCM-41 76
3.3.3 Preparation of Pt nanostructures in MCM-41 80
3.3.4 Structural studies of Pt nanowire bundles in MCM-41 83
3.3.5 Bimetallic AuPt nanowire bundles in MCM-41 91
3.3.6 Preparation of metal nanowire networks in MCM-48 96
3.3.7 Thermal decomposition study of functionalized mesoporous silica 99
3.3.8 Preparation and in-situ study of Pt nanoparticles in SBA-15 103
3.3.9 PXRD and TEM studies of Pt/SBA-15 107
3.3.10 Secondary incorporation of Pt in Pt/SBA-15 109
3.3.11 Preparation of Au/SBA-15 111
3.3.12 Secondary incorporation of Pt in Au/SBA-15 115
3.4 Summary 120
3.5 References 121
Chapter 4. Mesoporous silica thin film as low dielectric
constant material 125
4.1 Background 125
4.1.1 Low-dielectric constant materials 125
4.1.2 Sol-gel chemistry of silica 131
4.1.3 Mesoporous silica films as low-k material 132
4.2 Experimental 134
4.2.1 Preparation of molecularly templated mesoporous
silica film 134
4.2.2 Post-synthesis vapor phase modification 136
4.2.3 Plasma treatments 136
4.2.4 Structural and compositional analyses 136
4.2.5 Electrical properties measurements 137
4.3 Results and discussion 139
4.3.1 Structural and topological studies 139
4.3.2 Formation mechanism of spin-on silica film 146
4.3.3 Functionalization and hydrophobicity of silica film 146
4.3.4 Electrical properties of mesoporous silica film 148
4.3.5 Oxygen plasma treatment of mesoporous silica film 152
4.3.6 Post-synthesis treatments with reductive plasmas 156
4.4 Summary 162
4.5 References 163
Chapter 5. Conclusion and perspectives 167
1. Weigel, O.; Steinhoff, E. Z. Kristallogr. 1925, 61, 125.
2. Kresge, C. T.; Leonowiez, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
3. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowiez, M. E.; Kresge, C. T.; Schimitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834.
4. Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. Bull. Chem. Soc. Jpn 1990, 63, 988.
5. Inagaki, S.; Fukushima, Y.; Kuroda, K. J. Chem. Soc., Chem. Commun. 1993, 680.
6. Zhao, D.; Feng, J.; Huo, Q.; Melosh, W.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
7. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024.
8. Zhao, X. S.; Lu, G. Q.; Millar, G. J. Ind. Eng. Chem. Res. 1996, 35, 2075.
9. Windsor, P. A. in Gray, G. W.; Windsor, P. A. (Eds.) Liquid Crystals and Plastic Crystals, Vol. 1, Ellis Horwood, Chichester 1974.
10. Ekwall, P. in Brown, G. H. (Ed.) Advances in Liquid Crystals, Vol. 1, Academic, New York, 1975.
11. Beneke, K.; Lagaly, G. Am. Mineral. 1977, 62, 763.
12. Ciesla, U.; Demuth, D.; Leon, R.; Petroff, P.; Stucky, G. D.; Unger, K.; Schüth, F. J. Chem. Soc., Chem. Commun. 1994, 1387.
13. Huo, Q.; Margolese, D.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P.; Schüth, F.; Stucky, G. D. Nature 1994, 368, 317.
14. Tanev, P. T.; Pinnavaia, T. J. Science 1995, 267, 865.
15. Bagshaw, S. A.; Prouzet, E.; Pinnavaia, T. J. Science 1995, 269, 1242.
16. Huo, Q.; Margolese, D. I.; Stucky, G. D. Chem. Mater. 1996, 8, 1147.
17. Burkett, S. L.; Sims, S. D.; Mann, S. J. Chem. Soc., Chem. Commun. 1996, 1367.
18. Antonelli, D. M.; Ying, J. Y. Angew. Chem. Int. Ed. Engl. 1996, 35, 426.
19. Antonelli, D. M.; Ying, J. Y. Chem. Mater. 1996, 8, 874.
20. Antonelli, D. M.; Nakahira, A.; Ying, J. Y. Inorg. Chem. 1996, 35, 3126.
21. Firouzi, A.; Atef, F.; Oertli, A. G.; Stucky, G. D.; Chmelka, B. F. J. Am. Chem. Soc. 1997, 119, 3596.
22. Stucky, G. D.; Huo, Q.; Firouzi, A.; Chmelka, B. F.; Schacht, S.; Voigt-Martin, I. G.; Schüth, F. Stud. Surf. Sci. Catal. 1996, 105, 3.
23. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J. Chem. Soc., Faraday Trans. 1976, 72, 1525.
24. Israelachvili, J. N. Intermolecular and Surface Forces, Academic Press, London, 1991.
25. Stucky, G. D.; Monnier, A.; Schüth, F.; Huo, Q.; Margolese, D.; Kumar, D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F. Mol. Cryst. Liq. Cryst. 1994, 240, 187.
26. Firouzi, A.; Kumar, D.; Bull, L. M.; Bessier, T.; Sieger, P.; Huo, Q.; Walker, S. A.; Zasadzinski, J. A.; Glinka, C.; Nicol, J.; Margolese, D.; Stucky, G. D.; Chmelka, B. F. Science 1995, 267, 1138.
27. Yang, H.; Coombs, N.; Ozin, G. A. Nature 1997, 386, 692.
28. Yang, H.; Coombs, N.; Dag, O.; Sokolov, I.; Ozin, G. A. J. Mater. Chem. 1997, 7, 1755.
29. Yang, H.; Coombs, N.; Sokolov, I.; Ozin, G. A. Nature 1996, 381, 589.
30. Schacht, S.; Huo, Q.; Voigt-Martin, I. G.; Stucky, G. D.; Schüth, F. Science 1996, 273, 768.
31. Yang, H.; Kuperman, A.; Coombs, N.; Mamiche-Afara, S.; Ozin, G. A. Nature 1996, 379, 703.
32. Aksay, I. A.; Trau, M.; Manne, S.; Homma, I., Yao, N.; Zhou, L.; Fenter, P.; Eisenberger, P. M.; Gruner, S. M. Science 1996, 273, 892.
33. Yang H.; Coomb, Ss.; Sokolov, I.; Ozin, G. A. J. Chem. Mater. 1997, 7, 1285.
34. Yang, C. M.; Cho, A. T.; Pan, F. M.; Tsai, T. G.; Chao, K. J. Adv. Mater. 2001, 13, 1099.
35. Martin, J. E.; Anderson, M. T.; Odinek, J.; Newcomer, P. Langmuir 1997, 13, 4133.
36. Yang, H.; Coombs, N.; Ozin, G. A. Adv. Mater. 1997, 9, 811.
37. Huo, Q.; Zhao, D.; Feng, J.; Weston, K.; Burratto, S. K.; Stucky, G. D.; Schacht, S.; Schüth, F. Adv. Mater. 1997, 9, 974.
38. Huo, Q.; Feng, J.; Schüth, F.; Stucky, G. D. Chem. Mater. 1997, 9, 14.
39. Attard, G. S.; Glyde, J. C.; Göltner, C. G. Nature 1995, 378, 366.
40. Moller, K.; Bein, T. Chem. Mater. 1998, 10, 2950.
41. Ozin, G. A.; Chomski, E.; Khushalani, D.; MacLachlan, M. J. Curr. Opin. Collid Interface Sci. 1998, 3, 181.
42. Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Mater. 2000, 12, 1403.
43. Unger, K. K. Porous Slica- Its Properties and Use as Support in Column Liquid Chromatography, Vol. 16, Elsevier, Amsterdam 1979.
44. Price, P. M.; Clark, J. H.; Macquarrie, D. J. J. Chem. Soc., Dalton Trans. 2000, 101.
45. Moller, K.; Bein, T. Stud. Surf. Sci. Catal. 1998, 117, 53.
46. Zhao, X. S.; Lu, G. Q. J. Phys. Chem. B 1998, 102, 1556.
47. Mercier, L.; Pinnavaia, Environ. Sci. Technol. 1998, 32, 2749.
48. Beck, J. S.; Calabro, D. C.; McCullen, S. B.; Pelrine, B. P.; Schmitt, K. D.; Vartuli, J. C. Method for Functionalizing Synthetic Mesoporous Crystalline Material, Mobil Oil Corp., USA, 1992.
49. Kimura, T.; Saeki, S.; Sugahara, Y.; Kuroda, K. Langmuir 1999, 15, 2794.
50. Lim, M. H.; Blanford, C. F.; Stein, A. Chem. Mater. 1998, 10, 467.
51. van Rhijn, W. M.; De Vos, D. E.; Sels, B. F.; Bosaert, W. D.; Jacobs, P. A. Chem. Commun. 1998, 317.
52. Lim, M. H.; Stein, A. Chem. Mater. 1999, 11, 3285.
53. Shephard, D. S.; Zhou, W.; Maschmeyer, T.; Matters, J. M.; Roper, C. L.; Parsons, S.; Johnson, B. F. G.; Duer, M. J. Angew. Chem. Int. Ed. 1998, 37, 2719.
54. De Juan, F.; Ruiz-Hitzky, E. Adv. Mater. 2000, 12, 430.
55. Bellocq, N.; Abramson, S.; Laspéras, M.; Brunel, D.; Moreau, P. Tetrahedron: Asymmetry 1999, 10, 3229.
56. Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim, A. Y.; Liu, J.; Kemner, K. M. Science 1997, 276, 923.
57. van Rhijn, W.; De Vos, D.; Bossaert, W.; Bullen, J.; Wouters, B.; Grobet, P.; Jacobs, P. Stud. Surf. Sci. Catal. 1998, 117, 183.
58. Dai, S.; Burleigh, M. C.; Shin, Y.; Morrow, C. C.; Barnes, C. E.; Xue, Z. Angew. Chem. Int. Ed. 1999, 38, 1235.
59. Sanchez, C.; Ribot, F. New J. Chem. 1994, 18, 1007.
60. Sims, S. D.; Burkett, S. L.; Mann, S. Mater. Res. Soc. Symp. Proc. 1996, 431, 77.
61. Macquarrie, D. J. Chem. Commun. 1996, 1961.
62. Huo, Q.; Margolese, D. I.; Stucky, G. D. Chem. Mater. 1996, 8, 1147.
63. Lim, M. H.; Blanford, C. F.; Stein, A. J. Am. Chem. Soc. 1997, 119, 4090.
64. Babonneau, F.; Leite, L.; Fontlupt, S. J. Mater. Chem. 1999, 9, 175.
65. Mercier, L.; Pinnavaia, Chem. Mater. 2000, 12, 188.
66. Richer, R.; Mercier, L. Chem. Commun. 1998, 1775.
67. Brown, J.; Richer, R.; Mercier, L. Microporous Mesoporous Mater. 2000, 37, 41.
68. Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuma, T.; Terasaki, O. J. Am. Chem. Soc. 1999, 121, 9611.
69. Melde, B. J.; Holland, B. T.; Blanford, C. F.; Stein, A. Chem. Mater. 1999, 11, 3302.
70. Asefa, T.; MacLachlan, M. J.; Coombs, N.; Ozin, G. A. Nature 1999, 402, 867.
71. Yoshina-Ishii, C.; Asefa, T.; Coombs, N.; MacLachlan, M. J.; Ozin, G. A. Chem. Commun. 1999, 2539.
72. Inagaki, S.; Guan, S.; Ohsuna, T.; Terasaki, O. Nature 2002, 416, 304.
73. Yonemitsu, M.; Tanaka, Y.; Iwamoto, M. Chem. Mater. 1997, 9, 2679.
74. Ko, C. H.; Ryoo, R. Chem. Commun. 1996, 2467.
75. Ryoo, R.; Kim, J. M.; Ko, C. H.; Shin, C. H. J. Phys. Chem. 1996, 100, 17718.
76. Sasaki, M.; Osada, M.; Sugimoto, N.; Inagaki, S.; Fukushima, Y.; Fukuoka, A.; Ichikawa, M. Microporous Mesoporous Mater. 1998, 21, 597.
77. Sasaki, M.; Osada, M.; Higashimoto, N.; Yamamoto, T.; Fukuoka, A.; Ichikawa, M. J. Mol. Catal. A: Chem. 1999, 141, 223.
78. Yang, C. M.; Sheu, H. S.; Chao, K. J. Adv. Funct. Mater. 2001, 12, 143.
79. Junges, U.; Schüth, F.; Schmid, G.; Uchida, Y.; Schlögl, R. Ber. Bunsen-Ges. Phys. Chem. 1997, 101, 1631.
80. Fishel, C. T.; Davis, R. J.; Garces, J. M. J. Catal. 1996, 163, 148.
81. Leon, R.; Margolese, D.; Stucky, G. D.; Petroff, P. M. Phys. Rev. B: Condens. Matter 1995, 52, r2285.
82. Aronson, B. J.; Blanford, C. F.; Stein, A. Chem. Mater. 1997, 9, 2842.
83. Abe, T.; Tachibana, Y.; Uematsu, T.; Iwamoto, M. J. Chem. Soc., Chem. Commun. 1995, 1617.
84. Yang, C. M.; Chao, K. J. Stud. Surf. Sci. Catal. 2001, 135, 251.
85. Honma, I.; Sasabe, H.; Zhou, H. S. Mater. Res. Soc. Symp. Proc. 1997, 457, 525.
86. Hoppe, R.; Ortlam, A.; Rathousky, J.; Schulz-Ekloff, G.; Zukal, A. Microporous Mater. 1997, 8, 267.
87. Chen, J.; Li, Q.; Ding, H.; Pang, W.; Xu, R. Langmuir 1997, 13, 2050.
88. Diaz, J. F.; Balkus, K. J., Jr J. Mol. Catal. B: Enzymatic 1996, 2, 115.
89. Blum, Z.; Hyde, S. T. Acta Chem. Scand. 1994, 48, 88.
90. Wang, Z. L. Characterization of Nanopahse Materials, Wiley-VCH, New York, 2000.
91. Williams, D. B.; Carter, C. B. Transmission Electron Microsopy, Plenum Press, New York, 1996.
92. Wang, Z. L. J. Phys. Chem. B 2000, 104, 1153.
93. Ross, F. M.; LeGoues, F. K.; Tersoff, J.; Tromp, R. M.; Reuter, M. Microsc. Res. Tech. 1998, 42, 281.
94. Hansen, P. L.; Wagner, J. B.; Helveg, S.; Rostrup-Nielsen, J. R.; Clausen, B. S.; Topsøe, H. Science 2002, 295, 2053.
95. Hirsch, P. B.; Howie, A.; Nicholson, R. B.; Pashley, D. W.; Whelan, M. J. Electron Microscopy of Thin Crsytals, Roberts E. Krieger Publishing Company, New York, 1977.
96. Glusker, J. P.; Trueblood, K. N. Crystal Structure Analysis, a Primer, New York, Oxford, 1985.
97. Rietveld, H. M. J. Appl. Cryst. 1969, 2, 65.
98. Larson, A. C.; von Dreele, R. B. in Generalized Structure Analysis System, Los Alamos National Laboratory, Los Alamos, 1994.
99. Cullity, B. D. Elements of X-Ray Diffraction, Addison-Wesley, London, 1978, p101.
100. Teo, B. K. (Ed.) EXAFS: Basic Principles and Data Analysis, Springer-Verlag, New York, 1986.
101. Koningsberger D. C.; Prins, R. (Eds.) X-ray Absorption, John Wiley & Sons, New York, 1988.
102. Lee. P. A.; Pendry, J. B. Phys. Rev. B, 1975, 11, 2795.
103. Gurman, S. J.; Pettifer, R. F. Phil. Mag. B, 1979, 40, 345.
104. Sayers, D. A.; Stern, E. A.; Lytle, F. W. Phys, Rev. B, 1971, 27, 1204
105. Sayers, D. E.; Stern, E. A.; Herriott, J. R. J. Chem. Phys., 1976, 64, 427.
106. Stern, E. A. Phys. Rev. B, 1974, 10, 3027.
107. Ashely, C. A.; Doniach, S. Phys. Rev. B, 1975, 11, 1279.
108. Lee, P. A.; Beni, G. Phys. Rev. B, 1977, 15, 2862.
109. Lee, P. A.; Pendry, J. B. Phys. Rev. B, 1975, 11, 2795.
110. Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Phys. Rev. B, 1998, 7565.
111. Ankudinov, A. L.; Rehr, J. J. Phys. Rev. B, 1997, R1712.
112. Zabinsky, S. I.; Rehr, J. J.; Ankudinov, A. L.; Albers, R. C.; Eller, M. J. Phys. Rev. B, 1995, 52, 2995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top