跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.251) 您好!臺灣時間:2022/08/16 23:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳坤田
論文名稱:矽與矽鐵複合金屬對氯化有機物還原脫氯反應研究
論文名稱(外文):Reductive Dechlorination of Chlorinated Hydrocarbons in Si0-H2O and Si0/Fe0-H2O system
指導教授:陳俊顯陳俊顯引用關係董瑞安
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:85
中文關鍵詞:氯化有機物還原脫氯還原
外文關鍵詞:siliconironchlorinated hydrocarbonsreductive dechlorinationreduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
摘要
本研究以矽作為電子供給者對四氯化碳及四氯乙烯進行脫氯反應的探討,以了解用矽作為新穎物質來整治被氯化有機物污染場址的可行性,研究結果顯示四氯化碳及四氯乙烯皆可被矽完全分解,進行連續還原脫氯反應形成含氯較少的同類物,過程中有 85 % 的四氯化碳被轉化成氯仿,63 % 的四氯乙烯被轉化成三氯乙烯,且隨著矽添加量及 pH 的提高,四氯化碳的分解速率亦加快。四氯化碳及四氯乙烯的分解反應符合一階反應動力模式,其速率常數分別為 0.17 L h-1 m-2 及 0.0015 L h-1 m-2。結合矽和鐵的系統對四氯化碳及四氯乙烯的分解速率有顯著加快的效果。推知在矽鐵的系統中,還原脫氯的步驟是四氯化碳主要機制,四氯乙烯主要以 β-消去反應及還原脫氯的機制進行分解。其中還原脫氯反應為在高 pH 值之主要反應機制,而隨著pH的下降,β-消去反應成為控制四氯化烯分解的轉化機制,結果顯示出在分解氯化有機物上,鐵在矽鐵組合的中扮演重要的角色,而矽主要扮演 pH 的調控角色,使 pH 維持在 7.3 ~ 8.1。而添加催化劑及鎳離子可加速四氯乙烯在矽環境中的分解。
本研究所得到的結果可清楚的知道以矽來轉化氯化有機物是可行的,還原脫氯是主要的分解步驟,在結合矽鐵的系統可使產物的分佈趨向無毒的烷類。
Abstract
The dechlorination of carbon tetrachloride (CT) and tetrachloroethylene (PCE) using silicon as an electron donor was investigated. It was to evaluate the feasibility of using silicon as a novel material to remedy sites contaminated by chlorinated hydrocarbons. CT and PCE can be completely degraded via sequential reductive dechlorination to less chlorinated homologs by Si0. The productions of CF and TCE accounted for 85 % of CT and 63 % of PCE dechlorination, respectively. Increasing pH and Si amount also increased the dechlorination efficiency of CT. The degradation of CT and PCE by Si0 followed a pseudo first order kinetics and the rate constants were 0.17 L h-1 m-2 and 0.0015 L h-1 m-2, respectively. The combination of Si and Fe can also enhance the dechlorination rate of CT and PCE. Reductive dechlorination was the main reaction mechanism for CT dechlorination, while b-elimination and reductive dechlorination are the predominant reaction pathways for PCE dechlorination in the Si0/Fe0-H2O system. Reductive dechlorination was dominant at the on-set of the reaction and high pH and b-elimination was the main reaction pathway for PCE dechlorination as pH decreased. Fe0 plays an important role in the reduction of chlorinated hydrocarbons in the Si0/Fe0-H2O system and Si0 would act as pH buffer to maintain the pH in the range of 7.3 — 8.1. This corresponds to a change of 0.8 pH unit as the Fe0 dose increased by 2 orders of magnitude. Addition of catalyst or nickel ion can also enhance the dechlorination of PCE. Results clearly indicated the transformation of chlorinated compounds by silicon is practicable. Reductive dechlorination is the major degradation pathway, while the distribution of products will change to nontoxic alkane when Si0 was applied simultaneously with Fe0.
Content Index
謝誌…………………………………………………………… I
中文摘要…………………………………………………….. II
Abstract……………………………………………………….. III
Content Index………………………………………………….. IV
Table Index……………………………………….………... VII
Figure Index………….……….…………………..……….. VIII
Chapter 1. Introduction and motivation
1-1 Motivation………………………………………….. 1
1-2 Objective……………………………………………… 3
Chapter 2. Background and theory
2-1 Introduction to chlorinated hydrocarbons……. 4
2-1-1 Physicochemical properties of chlorinated hydrocarbons………………… 4
2-1-2 The toxicity of halogenated hydrocarbon.. 4
2.2 Abiotic transformation of chlorinated hydrocarbons..6
2-2-1 Abiotic transformation by zero-valent metals……………………… 6
2-2-2 Abiotic transformation by Si0…………… 12
2-2-3 Abiotic transformation using hydrogen catalyzed by palladium or nickel.....................17
2-3 Environmental factors affecting the dechlorination of chlorinated hydrocarbons………………………………… 18
2-3-1 Oxidation-reduction potential……………………… 18
2-3-2 Effect of physicochemical properties of chlorinated compounds………… 21
2-3-3 Effect of pH on dechlorination by zero-valent metal…………… 23
2-3-4 Effect of surface area on dechlorination..... 24
2-3-5 Effect of metal ions (Ni2+, Cu2+) on dechlorination.......... 26
2-4 Reaction mechanisms…………………… 26
Chapter 3 Research design and methodology
3-1 Experiment Scheme……….…………… 28
3-2 Chemicals………………………………….. 28
3-3 Abiotic transformation experiments…………… 29
3-3-1 Preparation of deoxygenated water……………… 29
3-3-2 Preparation of stock solution………………… 29
3-3-3 Dechlorination experiments………………… 31
3-4 Analytical Methods…………………………. 31
3-4-1 Analysis of chlorinated hydrocarbons………… 31
3-4-2 Analysis of the surface of silcon with ESCA 32
3-4-3 Analysis of the surface of silicon.... 32
3-5 Preparing Calibration curve.......... 35
Chapter 4 Results and discussion
4--1 Dechlorination of carbon tetrachloride by Si 36
4-1-1 Effect of pH……..................... 36
4-1-2 Effect of Si0 amounts on CT dechlorination 42
4-1-3 Dechlorination pathway in Si0-H2O……………… 46
4-1-4 CT dechlorination by Si0/Fe0………………….. 49
4-2 Dechlorination of tetrachloroethylene (PCE)........56
4-2-1 Dechlorination of PCE in the Si0-H2O system 56
4-2-2 PCE dechlorination using Si0/Fe0..... 59
4-2-3 Effect of Fe0 on dechlorination in Si0/Fe0-H2O system…………………................ ... 60
4-3 Reduction of PCE in the presence of catalyst 69
4-3-1 Effect of Pd0 and Ni0…………………......… 69
4-3-2 Effect of metal ........................ 73
Chapter 5 Conclusions............……………..…………..77
References…………………………………………………..……79
Appendix I Technical Data Sheet
Specification of Silicon Powder
Appendix II GC/MS/FID Analysis
Distribution of the products in the degradation of PCE in Fe0/Si0-H2O
Appendix III GC/MS/FID Analysis
Calibration Curve of Chlorinated Compounds
Reference:
Amonette, J. E., Workman, D. J., Kennedy, D. W., Fruchter, J. S., and Gorby, Y. A. (2000) Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environ. Sci. Technol., 34, 4606-4613.
Arnold, W. A. and Roberts, A. L. (1998) Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn(0). Environ. Sci. Technol., 32, 3017-3025.
Arnold, W. A. and Roberts, A. L. (2000) Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ. Sci. Technol., 34, 1794-1805.
Assaf-Anid, N., Hayes, K. F., and Vogel, T. M. (1994) Reduction dechlorination of carbon tetrachloride by cobalamin(II) in the presence of dithiothreitol: mechanistic study, effect of redox potential and pH. Environ. Sci. Technol., 28, 246-252.
Boronina, T., Klabunde, K. J., and Sergeev, G. (1995) Destruction of organohalides in water using metal particles: carbon tetrachloride/water reactions with magnesium, tin, and zinc. Environ. Sci. Technol., 29, 1511—1517.
Bressers, P. M. M. C., Pagano S. A. S. P., and Kelly, J. J. (1995) Ferricyanede reduction as a probe for the surface chemistry of silicon in aqueous alkaline solutions; Journal of Electroanalyt Chem, 391, 159-168.
Burris, D. R., Delcomyn, C. A., Smith, M. H. and Roberts, A. L. (1996) Vitamin B12 in homogeneous and heterogeneous systems. Environ. Sci. Technol., 30, 3047-3052.
Burrow, P. D., Aflatooni, K., and Gallup, and G. A. (2000) Dechlorination rate constants on iron and the correlation with electron attachment energies, Environ. Sci. Technol., 34, 368-3371.
Chang, C. C., Lo, J. G., and Wang, J. L. (2001) Assessment of reducing ozone forming potential for vehicles using lique.ed petroleum gas as an alternative fuel. Atmospheric Environment, 35, 6201-6211.
Chen, J. L., Ryan, A. A. S., R., J. A., and Li, Z. (2001) Effects of pH on dechlorination of trichloroethylene by zero-valent iron. Journal of Hazardous Materials B83, 243—254.
Cornell, R. M. and Schwertmann, U. (1996) The Iron Oxides; VCH Publishers: New York.
Deng, B., Burris, D. R., and Campbell, T.J. (1999) Reduction of vinyl chloride in metallic iron-water systems. Environ. Sci. Technol., 33, 2651—2656.
Dojlido, J.R. and Best, G. A. (1993) Chemistry of Water and Water Pollution; Ellis Horwood
Doong, R.A., Wu, S. C., (1992) Reductive dechlorination of chlorinated hydrocarbons in aqueous solutions containing ferrous and sulfide ions. Chemosphere, 24, 1063-1075.
Gantzer, C. J. and Wackett, L. P. (1991) Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ. Sci. Technol., 25, 715-722.
Gillham, R. W. and O’Hannesin, S. F. (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water, 32, 958-967.
Johnson, T. L., Scherer, M. M., and Tratnyek P. G. (1996) Kinetics of halogenated organic compound degradation by iron metal. Environ. Sci. Technol., 30, 2634-2640.
Krone, U. E., Thauer, R. K. and Hogenkamp, H. P. C. (1989) Reductive dehalogenation of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry, 28, 4908-4914.
Li, Z., Jones, H. K., Bowman, R. S., and Helferich, R. (1999) Enhanced reduction of chromate and PCE by pelletized surfactant-modified zeolite/zerovalent iron. Environ. Sci. Technol., 33, 4326 — 4330.
Li, T. and Farrell, J. (2001) Electrochemical investigation of the rate-limiting mechanisms for trichloroethylene and carbon tetrachloride reduction at iron surfaces. Environ. Sci. Technol., 35, 3560-3565
Lien, H. L. and Zhang, W. X., (1999) Transformation of chlorinated methanes by nanoscale iron particles. Journal of Environmental Engineering, NOV., 1042-1047.
Lipkowski, J. and Ross, P. N., (1998) Electrocatalysis; Wiley-VCH Publishers: New York
Lowry, G. V. and Reinhard, M. (2000) Pd-catalyzed TCE dechlorination in groundwater: solute Effects, biological control, and oxidative catalyst regeneration. Environ. Sci. Technol., 34, 3217-3223.
Lowry, G. V. and Reinhard, M. (1999); hydrodehalogenation of 1- to 3-carbon halogenated organic compounds in water using a palladium catalyst and hydrogen Gas, Environ. Sci. Technol., 33, 1905-1910.
Lowry, G. V. and Reinhard, M. (2001) Pd-catalyzed TCE dchlorination in water: effect of [H2](aq) and H2-utilizing competitive solutes on the TCE dechlorination rate and product distribution. Environ. Sci. Technol., 35, 696-702.
Matheson, L. J. and Tratnyek, P.G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol., 28, 2045-2053.
McNab, W. W. and Narasimhan, T. N. (1994) Degradation of chlorinated hydrocarbons and groundwater geochemistry: a field study. Environ. Sci. Technol., 28, 769-775.
Morel, F. M. M. and Hering, J. G.. (1993) Principles and Applications of Aquatic Chemistry, John Wiley & Sons, Inc.
Morita, M., Ohmi, T., Hasegawa, E., Kawakami, M., and Suma, K. (1989) Control factor of native oxide growth on silicon in air or in ultrapure water. Appl. Phys. Lett., 55, 562-564.
Muftikian, R., Fernando, Q., and Korte, N. (1995) A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water. Wat Res., 29, 2434-2439.
Niwano, M. (1999) In-situ IR observation of etching and oxidation processes of Si surface, Surf. Sci., 427, 199-207
Ogawa, H., Ishikawa, K., Inomata, C., and Fujimura, S. (1996) Initial stage of native oxide growth on hydrogen terminated silicon (111) surfaces. J. Appl. Phys., 79, 472.
O'Loughlin, E. J., Burris, D. R., and Delcomyn, C. A. (1999) Reductive dechlorination of trichloroethene mediated by humic-metal complexes. Environ. Sci. Technol., 33, 1145-1147.
Orth, W. S. and Gillham, R. W. (1996) Dechlorination of trichloroethene in aqueous solution using Fe0. Environ. Sci. Technol., 30, 66-71.
Oura, K., Lifshits, V. G., Saranin, A. A., Zotov, A. V. and Katayama, M. (1999) Hydrogen interaction with clean and modified silicon surfaces. Surface Science Reports, 35, 1-69.
Phillips, D. H., Gu, B. D., Watson, B., Roh, Y., Liang, L. and Lee, S. Y. (2000) Performance Evaluation of a Zerovalent Iron Reactive Barrier: Mineralogical Characteristics. Environ. Sci. Technol., 34, 4169 - 4176
Pourbaix, Marcel. (1974) Atlas of Electrochemical Equilibria in Aqueous Solutions.
Houston, Texas: National Association of Corrosion Engineers
Reardon, E. J. (1995) Anaerobic corrosion of granular iron: measurement and interpretation of hydrogen evolution rates. Environ. Sci. Technol., 29, 2936-2945.
Reynolds, G. W. and Hoff, J. T. (1990) Gillham, R. W. Sampling Bias Caused by Materials Used To Monitor Halocarbons in Groundwater. Environ. Sci. Technol., 24, 135-142.
Roberts, A. L., Totten, L. A., Arnold, W. A., Burris, D. R., and Campbell, T. J. (1996) Reductive elimination of chlorinated ethylenes by zero-valent metals. Environ. Sci. echnol., 30, 2654 — 2659.
Salvador, O., Herminio, S., and Fernando, V. D. (2000) Hydrodechlorination of aliphatic organochlorinated compounds over commercial hydrogenation catalyst. Applied Catalysis B: Environmental, 25, 49-58.
Savéant, J. M. (1993) Electron transfer, bond breaking, and bond formation. Acc. Chem. Res., 26, 455-461.
Scherer, M. M., Richter, S., Valentine, R. L. and Alvarez, P. J. J. (2000) Chemistry and microbiology of permeable reactive barriers of in situ groundwater clean up. Critical Reviews in Microbiology, 26, 221-264.
Struck, L. M., Eng Jr., J., Bent, B. E., Flynn, G. W., Chabal, Y. J., Christman, S. B., Chaban, E. E., Raghavachari, K., Williams, G. P., Radermacher, K. and Mantl, S. (1997) Vibrational study of silicon oxidation: H2O on Si(100). Surf Sci., 380, 444-454.
Su, C. and Puls, R. W. (1999). Kinetics of trichloroethene reduction by zero valent iron and tin: pretreatment effect, apparent activation energy and intermediate products, Environ. Sci. Technol., 33, 163-168.
Takano, N., Hosoda, N., Yamada, T., and Osaka T. (1999a) Mechanism of the chemical deposition of nickel on silicon wafers in aqueous solution. Journal of The Electrochemical Society, 146, 1407-1411.
Takano, N., Hosoda, N., Yamada, T., and Osaka T. (1999b) Effect of oxidized silicon surface on chemical deposition of nickel on n-type silicon wafer. Electrochimica Acta, 44, 3743-3749.
Tratnyek, P. G. and Scherer (1998) Correlation analysis of rate constants for dechlorination by zero-valent iron. Environ. Sci. Technol., 32, 3026-3033.
Vogel, T. M., Criddle, C. S., and McCarty, P.L (1987) Transformations of halogenated aliphatic compounds. Environ. Sci. Technol., 21, 722-736.
Wan, C., Chen, Y. H., and Wei, R. (1999) Dechlorination of chloromethanes on iron and palladium-iron bimetallic surface in aqueous systems. Environmental Toxicology and Chemistry, 18, 1091-1096.
Wang, C. B and Zhang W. X. (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol., 31, 2154-5157.
Zhang, W.X., Wang, C.B., and Lien, H.L. (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic Particles. Catalysis Today, 40, 387-395.
Zhou, X., Ishida, M., Imanishi, A., and Nakota, Y. (2001) Roles of charge polarization and steric hindrance in determining the chemical reactivity of surfaces Si-H and Si-Si bonds at H-terminated Si(100) and (111). J. Phys. Chem. B., 105, 156-163.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top